BN

S GORN, Ed |tor,

R ﬁ&r’@%.?&; P w/%“’vyc W

R W. BEMER, Asst. Edltor, Glossary & Terminology
J. GREEN, Asst. Editor, Programming Languages
E. LOHSE, Asst. Editor, Information Interchange

A Specification of JOVIAL*

CHRISTOPHER J. SHAW
System Development Corporation, Santa Monica, California

1. Introduction and Current Status

This report gives a complete specification of the latest
“official” version! of JoviarL, a general-purpose, proce-
dure-oriented, and largely computer-independent program-
ming language developed by System Development Cor-
poration for large-scale military systems and as a corporate
standard.

Work on Joviar, which is derived from Awvgor 58 [1]
and from Curr [2], began early in 1959. Since then, SDC
has built Joviar compilers for several machines: the IBM
7090; the IBM AN/FSQ-31v (this compiler is also running
on the closely related AN/I'SQ-32); the IBM AN/FSQ-7;
the Philco 2000; and the Control Data 1604 (this compiler
has been adapted for use with the 1604A). The first two
of these compilers accept an earlier and slightly different
version of Joviarn than is reported here. (And while all of
the language reported here has been implemented in one
compiler or another, none of them have implemented it
entirely.)

In addition to the compilers mentioned above, a fast,
one-pass compiler accepting a restricted subset of Joviawn
has been written and is running on the IBM 7090. It is
being adapted for the AN/FSQ-32 as part of the time-
sharing system being developed for that computer, and it
is also being adapted for the Philco 2000. SDC is also
writing a full-scale Joviar compiler for the IBM AN/
FSQ-32 that should be in operation by the time this re-
port appears.

Jcvian has found application outside as well as inside
SDC. Some thirty computer installations have received
JoviaL compilers, mainly through the users groups: SHARE,

* Received August, 1963. This report owes much to the valuable
help of M. H. Perstein and the other members of the Jovial Com-
piler Staff at System Development Corporation.

1 The design of the language deseribed in this report was com-
pleted in June 1961; no changes have been made since. Recently,
however, it was decided again to consider language change pro-
posals, and it can be expected that several minor improvements
and extensions will have been adopted by the time this report is
published.

Volume 6 / Number 12 / December, 1963

Tue and Co-op. JoviaL has been adopted by the Navy
Command Systems Support Activity as the interim stand-
ard programming language for Navy strategic command
systems.

2. Notation

In this report, the metalanguage used to describe JoviaL
syntax is the so-called Backus Normal Form,? with a
few additions.

The elements of the metalanguage either denote or
exhibit Jovrarn sign-strings. Except for the blank, JoviarL
signs thus stand for themselves, while terms made up of
lower-case letters, possibly hyphenated, denote whole sets
of JoviaL sign-strings. The { and) brackets are used, not
to enclose these terms, but to group strings of elements
into, in effect, single elements.

A concatenation of these elements signifies a concatena-
tion of JoviaL signs. (Spaces have no meaning here and
only improve readability.) The | symbol signifies selection
between alternative strings of elements, (as limited by the
{ and) brackets.) The ::= symbol signifies syntactic
equivalence.

A subscript appearing after any metalinguistic element
is merely a “semantic”’ cue, with no formal syntactic
effect.

The term null is introduced, with the following mean-
ing:
null ::=

(The null or empty string of signs.)

To simplify the semantic explanation, alternative def-
initions of certain metalanguage elements are given at
different places in the text. This has been noted, but the
index at the end is perhaps the most convenient guide.

3. Alphabet and Vocabulary

JoviaL’s symbols are formed from an alphabet of 48
signs consisting of 26 letters, 10 numerals, and a dozen
miscellaneous marks including the blank and the dollar

2 As used in 1963 [3].

Communications of the ACM 721

sign. (This alphabet is the hardware alphabet as well as
the reference alphabet.)

sign ::= letter | numeral | mark
letter ::= A|B|CD|E|F|GHI|L|J|K|LM|N|O/P[Q|R|S|T|U|V|
WIX|Y|Z

numeral ::= 0]1|2]3]4|5[6]7|8|9
mark 1= blank |[(]) |4 {—|*|/{.],]"|=1$
Strings of JoviaL signs form symbols, which are classed
as delimiters, identifiers, and constants.
symbol ::= delimiter | identifier | constant

3.1 DeELvrrers. Delimiters are the verbs, the adjectives,

and the punctuation of Joviar. They have fixed meanings,

best described in later context.

delimiter ::= arithmetie-operator | relational-operator | logical-
operator | sequential-operator | file-operator | funetional-modi-
fier | separator | bracket | declarator | desceriptor

arithmetic-operator ::= 4 |—|%|/[**

relational-operator ::= EQ|GR|GQ|LQ|LS|NQ

logical-operator ::= AND|OR|NOT

sequential-operator ::= IF|GOTO|FOR|TEST|CLOSE]
RETURN|STOP [IFEITH,, |[ORIF

file-operator ::= OPEN|SHUT |INPUT|OUTPUT

functional-modifier ::= BIT|BYTE|MANT s.|CHAR seteristiol
ODD [NENT [NWDSEN |[ALL[ENTRY [POS.ion

separator ::= .|, |=|==|...|$

bracket ::= (])[(/1/)|($$)|”|”|BEGIN [END DIRECT|JOVIAL|
START | TERM

declarator ::= ITEM|MODE|ARRAY [TABLE |STRING |
OVERLAY |DEFINE [SWITCH [PROC, gur. |[FILE

descriptor ::= Fioating |A rithmetic|Duat |Signea | Unsigned | Rounded | Hotteritn |

Trunsmission-code |Status lBoolean Iva.riable !Rigid IPreset |Like IPB.rallel |
Serial |Dense |Medium [No |Bina‘ry

3.2 IpENTIFIERS. Identifiers are either loop counters or
names. Loop counters serve to identify the intrinsic set
of signed, integer-valued variables used in econtrolling
loops. (Loop counters are discussed further in Section 7
on Loops.) Names serve to identify the elements of a
JoviaL program’s information environment: statements,
switches, procedures, items, array-items, tables, string-
items, and files. Except for context-defined statement
names (and, in a sense, mode-defined item names), all
JoviaL names must be declared—either explicitly, in the
program, or implicitly, in the Compool? or the procedure
library.

A JoviaL name is an arbitrary—though usually mne-
monic—alphanumeric symbol, at least two characters long,
which may be punctuated for readability by the " mark.

identifier ::= loop-counter | name

loop-counter ::= letter

name ::= {letter | name) (null | /) {letter | numeral)
Examples:

A

V/

STEP’01

BRANCH

U238

FLIGHT’POSITION

Names must obviously be distinguishable from delimiters
and from each other. This is done by unique spelling—

3 A Compool, in effect, is a library of system environment decla-
rations and storage allocation parameters.

722 Communications of the ACM

with the exception that names defined within a procedure
are defined only for that procedure and do not conflict with
names defined outside it. Furthermore, names defined with-
in a program are defined only for that program, excluding
procedures that define identically-spelled names. Names
defined in a Compool are defined for an entire program sys-
tem, excluding programs or procedures that define identi-
cally-spelled names. The names of data clements (items,
arrays, tables, strings, and files) must be defined before
they may be used.

3.3 CownsranTs. JoviaL programs manipulate four types
of data: numeric values, consisting of the class of rational
numbers and rational number pairs; literal values, con-
sisting of strings of Joviat signs; status values, consist-
ing of independent sets of arbitrarily named states (such
as Good, Fair, Poor); and Boolean values, consisting of
the two values, True and Talse.

constant ::= numeric-constant | literal-constant | status-con-
stant | Boolean-constant
numeric-constant ::= integer-constant | floating-constant | fixed-

constant | octal-constant | dual-constant

A Jovian constant, therefore, denotes a particular value
as represented by a particular machine-language symbol.
Numbers, integer constants, and floating- and fixed-point
constants denote numeric values in the conventional, dec-
imal sense, while octal constants have the obvious mean-
ing of octal integers and dual constants denote pairs of
numeric values. Literal constants denote Jovial sign-strings,
represented in one of two possible 6-bit-per-sign encoding
schemes, status constants are mnemonic names denoting
qualities or categories rather than numeric values, and
Boolean constants denote either True (by 1) or False
(by 0).

number ::= numeral (null | number)

signed ::= null | 4 | —

integer-constant ::= number | number Exponent-base-10 number

floating-constant ::= (number . | number . number | . number)
(null | Exponent-base-10 Signed number)

fixed-constant ::= floating-constant A signed number of_traction-bits

octal-number ::= (0]1|2]3]|4]5|6|7)null | octal-number)

octal-constant ::= Oga (octal-number)

dual-constant ::= Dy ((signed integer-constant , signed integer-

constant | signed fixed-constant , signed fixed-constant | octal-
constant , octal-constant))

sign-string ::= sign (null | sign-string)
literal-constant ::= numberot-signs Hollerith-code (Sign-string) |
nuUMberss.signs T ransmission-cods { Sign-string) | octal-constant
status-constant ::= V. ((letter | name))
Boolean-constant ::= lirue | Oratse
Examples:
018
123E4
.5
5.6789E—4A36
O17760)
D(—32,416)

27TH(THIS IS A LITERAL CONSTANT.)
11T(SO IS THIS.)

V(EXCELLENT)

1

Volume 6 / Number 12 / December, 1963

In the integer-, floating-, and fixed-constants, the num-
ber following E is a decimal scaling factor expressed as an
integral power of 10. In the fixed-constant, the number
following A is a binary scaling factor, indicating precision,
expressed as the number of fractional bits included in the
machine-language symbol representing the value. (A nega-
tive precision-number implies truncation of least significant
integral bits.)

Of the two coding schemes available for representing
literal values, the more generally useful is Hollerith, the
machine-dependent code by which literal values are in-
put and output. Transmission-code, on the other hand,
with its defined representation, does allow machine-in-
dependent symbol manipulation procedures to be written.
The collating sequence for Transmission-code (wherein #
denotes an unused numeric code) is the following: blank
#####ABCDEFGHIJKLMNOPQRSTU
VWXYZ)—+#=##$+(####,#0123456
7897 #/.#+# Any JoviAL sign may appear in a literal
constant’s sign-string, so the number of signs within the
parentheses must equal the number preceding the H or
T. Notice that an octal constant may denote a literal
value (or, rather, its machine-language representation).
This is useful, for example, in order to specify a code not
associated with a JoviAL sign.

The value of a status constant is defined only in context
with a corresponding status variable, so its name may
duplicate that of other status constants associated with
different status variables. (Indeed, it may even duplicate
a name used for another purpose.)

4. Comments

A comment allows a remark or clarifying text to be
included among the symbols of a Jovian program. Com-
ments are ignored by the compiler and so have no opera-
tional effect whatever on the program.
comment ::= " sign-stringexcluding-tho-"-and-§-symbols”

Ezample:

"THIS IS A COMMENT.”

Note that the omission of either ”* bracket is a major
error, for subsequent commentary is interpreted by the
compiler as program, and vice versa. To minimize the
effect of such an error, the sentence-terminating $ sep-
arator (though not the ($ and $) brackets) is excluded
from commentary. Also excluded, of course, is the ”’
bracket itself.

5. Clauses

Strings of Joviar symbols (delimiters, identifiers, and
constants) form clauses: item deseriptions, which describe
values; variables, which designate values; and formulas,
which specify values. In general, symbols may be separated
by comments or by an arbitrary number of blanks.
separation ::= (blank | comment) (null | separation)

However, no separation is needed when one or both
of the signs so joined is a mark. To indicate symbol separa-
tion, then, the context-dependent term o must be intro-

Volume 6 / Number 12 / December, 1963

duced, with the following meaning:

(numeral |letter) o (numeral | letter) ::= (numeral | letter) scpara-
tion (numeral | letter)

sign o mark ::= sign (null | separation) mark

mark o sign ::= mark (null | separation) sign

5.1 Item Dgescriprions. In Jovian, the basie units of
data are called items. All the necessary characteristics of
an item’s value, such as its type, and the format and coding
of the machine-language symbol representing it, need be
supplied only once—in an item description.

description ::= numeric-item-description | literal-item-deserip-
tion | status-item-description | boolean-item-description
numeric-item-description ::= floating-point-item-deseription |
fixed-point-item-description | dual-item-description
floating-point-item-description ::= Fioating © (Mlliruncated |Roundea) ©
(null | floating-constant o ... o floating-constant)
fixed-point-item-description ::= A ighmesic © NUMbeTitits © (Siguea |
Unsigned) © (nullintegrar | signed number of-¢ractional-bits) ©
Mulliruncated | Roundea) © (null | integer-constant o ...
constant | fixed-constant o ... o fixed-constant)
dual-item-description ::= Dya o numberoriits-per-batt © (Signed |
Usignea) © (nullintegrar | signed numberss-fructional-bits-per-half) ©
Mmullgrunested | Roundea) © (null | dual-constant o ... o dual-con-
stant)
literal-item-description

o integer-

o= <l{ullvrith-codc l 'I‘ruusmiasiuu—code) ° num-

berof—sigus
status-list ::= status-constant o (null | status-list)
status-item-description ::= S¢atus © (null | nUMber,s.1its) o status-list
boolean-item-description ::= Byyican
Fxamples:
F R.5E—7... .5E43
A36S15
D 16 U R D(0,0) ... D(25E3, 25E3)
H 120

S V(BAD) V(POOR) V(FA1IR) V(GOOD) V(FINE)
B

In the three numeric item descriptions, the R for
Rounded descriptor declares that any value assigned to
the item be rounded rather than truncated, as would be
the case were the R omitted. The pair of numeric constants,
separated by the ... separator, declare the estimated
minimum and maximum absolute values of the item, in
that order. (This optional, estimated range is useful mainly
for purposes of program documentation, though it may
be used by a compiler to optimize the machine-language
program’s manipulation of the item.)

In both fixed-point and dual item deseriptions, number
of bits includes both integral and fractional bits, and a
sign-bit, if any. (The presence of a sign-bit is declared by
the S for Signed deseriptor; the absence, by the U for
Unsigned descriptor.) If number of fractional bitsis omitted,
an exact integer (or dual integer) is declared; and if num-
ber of fractional bits is negative, the low-order integer
bits are declared not significant and therefore need not be
represented.

In the status item description, the list of status constants
declares the possible values of the item. These values are
encoded, in order, by the series of numbers 0, 1, 2, 3, ete.
When number of bits is omitted, the size of the machine-
language symbol needed to represent the item’s value is

Communications of the ACM 723

derived from the number of status constants. (When a
number of bits & is given, the number of status constants
may not exceed 2%,)

5.2 VariaBrLEs. A variable designates a value which may
be altered during the course of program execution. Since
items are the basic units of data in JoviaL, they are the
chief variables. If an item name designates more than one
value, as in an array, table, or string, then an index list
(of numeric formulas) must be appended (as a subscript,
enclosed in the (§ and $) brackets) to distinguish a par-
ticular value.

variable ::= numeric-variable | literal-variable | status-variable |
Boolean-variable

index ::= numeric-formula

index-list ::= index o (null |, o index-list)

subseript ::= ($ o index-list o $)

numeric-variable ::= nameof-numeric-item © (null | subseript)
literal-variable ::= namesiteral-item © {null | subseript)

status-variable ::= name,sstatus-item © (null | subseript)
boolean-variable ::= nameot-Boolean-item © (null | subseript)

Joviar has other variables besides items. These are
discussed in the sections on loops (7), functional modifiers
(19), and input-output (13).

5.3 Formuras. A formula specifies a value and is, in
effect, a computing rule for obtaining that value. A formula
may contain variables and so the value it specifies, in
general, is dynamically dependent on these variables, as
will be described.
formula ::= numeric-formula | literal-formula | status-formula |
boolean-formula
5.3.1 Functions. A function specifies the value com-
puted by a procedure utilizing the function’s actual input
parameters, if any. (These are values, as specified by
formula, and arrays or tables, as denoted by name.) Func-
tions are numeric, literal, status, or Boolean—according
to the type of data value they specify. (The rules govern-
ing actual parameters and function types are covered in
the section on procedures.)
function ::= name,procedure © (© (null | actual-input-parameter-
list) o)
Examples:
ARCSIN (GAMMA#2,72, 1.0E—4)

RANDOM ()
SYMMETRIC(MATRIX’A)

Because a function value is computed by & procedure,
specifying a function value may have other “side-effects”
on program execution. However, the value specified by a
formula is undefined when that formula contains both a
variable, and a function that affects its value.

5.3.2 Numeric Formulas. A numeric formula specifies a
numeric value computed from the values expressed by its
individual operands—numeric constants, variables, and
functions. The arithmetic operators 4, —, *, /, and **
have the conventional algebraic meanings of addition,
subtraction or negation, multiplication, division, and ex-
ponentiation. As in algebra, division by zero is undefined.
Fractional or mixed exponents are possible, but since

724 Communications of the ACM

JoviaL deals only with rational numbers, any exponentia-
tion that would specify a complex root, such as (—2)xx.5,
is also undefined. The parentheses (and) perform their
usual grouping function, and the absolute value brackets
(/ and /) specify the magnitude of the value of the nu-
meric formula they enclose. With these brackets, formulas
of any complexity may be constructed.
numeric-formula ::= numeric-constant | numeric-variable |
funetionynumerie-type | {4 | =) o numerie-formula | (numerie-

formula o) | (/ o numerie-formula o /) | numerie-formula o

arithmetic-operator o numeric-formula

Ezamples:

AA($09) 52/ (AA ($19)—AA(828)/ (XX +1/XX)
(—273. *ALPHA (0) 4 (/BETA ($T12$) /) #e—
LOG (BETA ($T2$)))/1.880E—6

The sequence of arithmetic operations in a numeric
formula is determined primarily by the way the formula
is bracketed and secondarily by the conventional operator
precedence scheme: first, negations are performed; second,
exponentiations; third, multiplications and divisions;
fourth, additions and subtractions; finally, within these
categories, operations are performed from left to right in
order of listing.

In JovriaL, numeric values have three modes of repre-
sentation: floating-point, fixed-point, and dual fixed-point.
Any arithmetic operation may be performed in any one
of these modes, upon operands of like mode. (In the dual
mode, operations are done in parallel, with the left com-
ponent of one operand combined with the left component
of the other to yield the left component of the result, and
similarly for right components.) However, a numeric
formula may combine operands having different modes of
representation, so the following automatic conversions
between modes are implied: fixed to floating, floating to
fixed, fixed to dual.t

The precision of the result of a fixed-point (or dual
fixed-point) computation is ecompiler-dependent and can-
not be exactly defined, but some useful limits can be
established. Where the maximum possible significance of a
result exceeds the maximum allowed numeric-operand
size, the result is truncated to this limit in the following
manner: first, the least significant fraction bits of the result
are truncated; and second, if necessary, the most significant
integer bits. (In determining the maximum possible sig-
nificance of a fixed-point result, exact integers are re-
garded as arbitrarily precise.)

5.3.3 Literal and Status Formulas. Both literal and
status formulas specify a value as expressed by a single
operand—a constant, a variable, or a function—of the
appropriate type.
literal-formula ::= literal-constant | literal-variable | fune-

10N of-literal -type
status-formula ::= status-constant | status-variahle | fune-

10N of-status-type

4 The single-valued fixed-point operand is “twinned’’ or dupli-
cated.

Volume 6 / Number 12 / December, 1963

Examples:
6T(ABACUS)
0(060706103230)

SIGNAL

V(CLOUDY)

WEATHER (SAIRBASES)
TYPE (SIGNAL)

5.3.4 Boolean Formulas. A Boolean formula specifies a
Boolean value, either True or False, computed from the
values expressed by its individual operands—Boolean con-
stants, variables, and functions; and relational formulas.
numeric-relation-list ::= relational-operator o numerie-formula

o {null | numeric-relation-list)
literal-relation-list ::= relational-operator o literal-formula

o (null | literal-relation-list)
relational-formula ::= numeric-formula o numeric-relation-list |

literal-formula o literal-relation-list | (status-variable |

name,ys-rie) © relational-operator o status-formula
boolean-formula ::= boolean-constant | boolean-variable | func-
ti0Not-boolean-type | relational-formula | (o boolean-formula o) |

NOT e boolean-formula | boolean-formula « (AND | OR) ¢ boolean-

formula

Ezxamples:

0

INDICATOR

LEGAL (SIGNAL)

—13 LS ALPHA LQ 4100 LS BETA($T2$) LQ 4193

1T(A) LQ SIGNAL LQ 1T(Z)

WEATHER (SATRBASES) EQ V(FAIR)

INDICATOR AND NOT (WEATHER (SATRBASES$) EQ V(FAIR)

OR LEGAL(SIGNAL))

A relational operator compares the pair of values spec-
ified by the formulas on either side to determine whether
the indicated relation holds between them. A relational
formula thus specifies True only when all its relations hold.
The relational operators indicate primarily numeric rela-
tions: EQ, is IiQual to; NQ, is ulNeQual to; GR, is GReater
than; LQ, is Less than or eQual to; LS, is LesS than;
and GQ, is Greater than or eQual to. They may be used,
however, to compare both literal and status values on the
basis of their numeric encoding. Shorter literal values are
prefixed by blanks before comparison. (The use of a file
name in a relational formula is treated in Section 13.2,
Testing and Positioning Files.)

Logical operations can be performed on Boolean values
in much the same way that arithmetic operations are per-
formed on numeric values. The logical operator NOT
reverses the value specified by the subsequent Boolean
formula, while AND yields True only if the Boolean
formulas on either side both specify True, and OR yields
Tralse only if the Boolean formulas on either side both
specify Talse. Unless parentheses indicate otherwise, the
precedence of the logical operations is: NOT’s first, ANI’s
second, and OR’s last; from left to right.

0. Basic Declarations and Statements

Clauses are combined with certain delimiters to form
declarations and statements, which are the sentences of
Joviar. Statements assert actions that the program is to
perform (normally in the sequence in which they are

Volume 6 / Number 12 / December, 1963

listed) and declarations describe the information environ-

ment in which the actions are to occur.

declaration ::= item-declaration | mode-declaration | array-
declaration | table-declaration | initial-value-declaration |
overlay-declaration | define-declaration | procedure-declara-
tion | switch-declaration | file-declaration

6.1 ITem DrcLaraTiONs. In data processing, the natural

unit of information is the value. In JoviaL, values other

than those denoted by constants, or used only as inter-

mediate results, or for controlling loops, must be formally

declared as items—simple items, array items, table items,

or string items—before they may be referenced. When not

part of a table declaration, an item declaration defines a

simple item, with a single value.

item-declaration :
Ezamples:

ITEM P66 F $

ITEM TALLY AI5URO... 2E4 §

ITEM FLIGHT’POSITION D16 S5 §

ITEM IDENTH 12 $

ITEM HEADING S 6 V(N) V(NE) V(E) V(SE) V(8) V(8W)
V(W) V(NW) $

ITEM SPAREB $

:= ITEM o namey.item © deseription o $

6.2 Mopr Durcraratrons. A mode declaration starts a
new normal mode of item description for the implicit
declaration of all subsequently referenced and otherwise
undefined simple items.®

mode-declaration ::= MODE o description o $

Ezxzamples:
MODEF R $
MODEA15U3S$
MODEB $

After a mode declaration, the initial occurrence of any
name, in any context where a simple item name is ex-
pected, serves at that point to declare an item with that
name, deseribed according to the mode. A mode declaration
remains effective until superseded by another mode decla-
ration.

6.3 ArRraY DrcraratioNs. An array declaration de-
seribes the structure of a collection of similar item values,
and also provides a means of identifying this collection
with a single item name. Rectangular arrays of any number
of dimensions may thus be declared.

dimension-list ::= number,i.itoms-per-dimension © {null | dimension-
list)

array-declaration ::= ARRAY o nameof.item © dimension-list o
description o §
Ezamples:

ARRAY ALPHA 2435 FR §
ARRAY CARIDVIMAGE 80 H 1§
ARRAY TIC’TAC’TOE 3 3 S V(EMPTY) V(INOUGHT)

V(CROSS) $
ARRAY CHARACTER’'MATRIX 75B §

In designating an individual value from an n-dimen-
sional array, the array item name must be subseripted by
an n-component index list of numeric formulas; and where
the size of a dimension is &k items, the integral value

5The inilial, normal mode of item description is ecompiler-
dependent.

Communications of the ACM 725

(truncated, if necessary) of the corresponding component
of the index list can only range from 0 thru k-1.

6.4 SimpLe, ComMpPLEX, AND COMPOUND STATEMENTS. It
is convenient to recognize three types of statements in
Joviaw: simple statements, which express ‘“primitive” data
processing actions; complex statements, which incorporate
simple or compound statements within them; and com-
pound statements, which group together whole strings of
statements—simple, complex, or compound.

statement ::= simple-statement | complex-statement | compound-
statement

statement-list ::= (statement | declaration) o (null | statement-
list)

simple-statement ::= assignment-statement | exchange-state-

ment | go-to-statement | test-statement | stop-statement |
return-statement | procedure-statement | input-statement |
output-statement
complex-statement ::= conditional-statement | loop-statement |
direct-code-statement | alternative-statement | closed-state-
ment
compound-statement ::= BEGIN o statement-list e END
Notice that a compound statement may contain decla-
rations. (However, the scope of these declarations is gener-
ally not limited by the BEGIN and END brackets that
serve as statement parentheses.) To function as a state-
ment, though, a compound statement must contain at
least one statement that is not a closed statement. (The
various simple and complex statements are treated in
subsequent sections.)

6.5 NaMED STATEMENTS. A statement must often be
named to permit it to be executed out of its normal,
listed sequence. Any JoviaL statement—simple, complex,
compound, or already named—may be named. A name is
needed, however, only when the statement is to be executed
out of sequence.

simple-statement ::= name,i siatement © - © sSimple-statement
complex-statement ::= name,s.statemens © - © complex-statement
compound-statement ::= nameos-statoment © - © compound-statement

6.6 AssIGNMENT STATEMENTS. An assignment statement
assigns the value specified by a formula to be the value
thereafter designated by a variable. The formula must,
therefore, specify a value of the type—numeric, literal,
status, or Boolean—designated by the variable.
assignment-statement ::= variable ¢ = o formula o §

Examples:

ALPHA = ALPHA 427§

SIGNAL = 1T(M) $

WEATHER(SAIRBASES) = V(CLOUDY) $

INDICATOR = —13 LS ALPHA LQ 4100 LS BETA LQ 4198

OR LEGAL (SIGNAL) §

During assignment, where necessary, numeric values are
automatically converted to the representation, and are
rounded or truncated to the precision, of the variable to
which they are being assigned. However, the following are
undefined : assigning a negative value to an unsigned vari-
able; assigning a dual value to a fixed- or floating-point
variable; assigning a value to a variable with fewer sig-
nificant bits than the value.

726 Communications of the ACM

Literal values are right-justified during assignment and,
where necessary, they are prefixed by blanks. However,
assigning a literal value to a variable with fewer signs than
the value is undefined.

Status value assignments operate as if on unsigned
integers, but assigning a status value to a variable with a
different encoding is undefined.

6.7 ExcuaNGE STATEMENTS. An exchange statement ex-
changes the values designated by a pair of variables. The
effect of an exchange statement on either of the variables
involved is as if each had been assigned the value desig-
nated by the other. Consequently, the rules of assignment
pertain, and both variables must be the same type: nu-
merie, literal, status, or Boolean.
exchange-statement ::= variable ¢ == o variable o §
Examples:
SIGNAL == CARD’IMAGE$2758) $
WEATHERGAIRBASES) == WEATHER(SATRBASE+41$) $
6.8 CONDITIONAL STATEMENTS. A conditional statement
is a complex statement whose two major constituents are
an if-clause containing a Boolean formula and a simple or
compound statement. The execution of this statement is
conditional. Tf the Boolean formula specifies True, the
statement is executed. If it specifies False, the statement
is skipped, and operation continues with the next listed
statement.
if-clause ::= 1F o boolean-formula o $
conditional-statement ::= if-clause o (simple-statement | com-
pound-statement)
Bzample, contained in a (compound) JoviaL statement
computing gross pay for an hourly employee:
BEGIN COMPUTE’GROSS’PAY.
GROSS’PAY (SEMPLOYEES$) = HOURS’WORKED ($EMPLOY -
EE$) * HOURLY'PAY (SEMPLOYEES$) $
1IF HOURS’WORKEDGEMPLOYEES$) GR 40 $ GROSS’PAY
(SEMPLOYEES$) = GROSS’PAY (SEMPLOYEES) 4+ (HOURS’
WORKED (SEMPLOYEES$) — 40) * HOURLY'PAY($EM-
PLOYEES) /2§
END "COMPUTE’GROSS’PAY”
6.9 Go-To SrateMENTS. A go-to statement breaks the
normal, listed sequence of statement executions by trans-
ferring control to the statement bearing the given name,
or specified by the switch call. (Switches and switch calls
are treated in Section 12.)
go-to-statement ::= GOTO o (nameof-noxt-statemens | SWitch-call) o $
Examples:
GOTO COMPUTE’GROSS’PAY §
GOTO STEP ($3%) $

7. Loops

Counting and count-controlled loops are among the
most common operations in programming. For this reason,
Joviar includes an intrinsic set of loop counters—signed,
integer-valued variables, each designated by a single letter.
numeric-variable ::= loop-counter

A loop counter is activated and assigned an initial value
only by the execution of a for-clause in a loop statement.

Volume 6 / Number 12 / December, 1963

7.1 Loop StateMENTS. A loop statement is a complex
statement consisting of a list of for-clauses which establish
the loop counters, and a simple or compound statement,
which forms the repeatedly-executed body of the loop.

loop-indices ::= indeXinisial-value | INd€Xinitial-vatue © 5 © iNdEXineromens |
indexinitiul—vulue o, 0 indexinerement °,0 indexlimit

for-clause ::= FOR o loop-counter o = o loop-indices o $

loop-statement ::= for-clause o (simple-statement | compound-
statement | BEGIN o statement-list o if-clause o END | loop-
statement)

Ezamples. The first example sets the first 500 NUMBERs
to zero; the second computes o; = 2i+1—1; the third
transposes the 25 by 25 matrix, NODE.

FOR A = 0,1,499 $ NUMBER(A) = 0. §
FORI=0,1,99 $ FOR S = 1,S+1$ ALPHASI$) = S $
BEGIN TRANSPOSE. FORT = 0,1,23 §
BEGIN FOR J = I+1,1,24 §
NODEL,J) == NODE($J,1$) $

END END E

A loop statement activates one or more loop counters,
assigns them each an initial value, and causes its con-
stituent simple or compound statement to be executed one
or more times. If the for-clauses in the loop statement all
contain only initial-value indexes, this statement is exe-
cuted just once. However, if any of the for-clauses contain
an increment index, the statement is repeatedly executed,
and after each repetition, the values of the appropriate
loop counters are modified by the addition of the current
values of the corresponding increment indices. (This occurs
in reverse of the order in which the loop counters are
activated.) I'inally, one of the for-clauses may contain a
limit index as well. (Only one such for-clause is allowed
per loop statement,® and it must precede any other for-
clauses containing increment indices.) If so, then the just-
incremented value of the corresponding loop counter is
tested, and the loop is terminated when that value exceeds
the current value of the limit index—in the positive di-
rection if the increment was positive or zero, and in the
negative direction if the increment was negative.

The loop statement containing an if-clause just before
the final END bracket conditionally performs the incre-
menting and limit testing routine. If the Boolean formula
of the if-clause specifies the value True, the routine is per-
formed. Otherwise, it is skipped and the loop is terminated.

The range of activity of a loop eounter includes the for-
clause whose execution activates it, all subsequent for-
clauses, and the statement that forms the loop’s repeatedly-
executed body. The use of an active loop counter as a
numeric variable is not restricted.

In general, only an inactive loop counter may be acti-
vated by a for-clause. An active loop counter may be re-
activated, though, by the re-execution of its corresponding
for-clause as the result of a transfer of control from within
the loop. Individual for-clauses in a loop statement can be

¢ This means that a loop statement can produce just a single
loop. Loops within loops must be constructed by embedding the

inner loop in a compound statement iterated by the outer loop.

Volume 6 / Number 12 / December, 1963

given statement names for this purpose. Ordinarily, how-
ever, any transfer of control into a loop statement from
outside will produce undefined results, due to inactive (and
therefore undefined) loop counters.?

7.2 Trst STaATEMENTS. The test statement, which is only
defined within a loop statement, expresses a transfer of
control to the implicit (and thus unnamed) loop-counter
modification routine at the loop’s end.
test-statement ::= TEST o $ | TEST o loop-counter o $
Ezamples:
TEST $
TEST Y $
A test statement with no loop counter indicated transfers
control to the first loop counter modification of the inner-
most applicable loop statement, and thus effects the modifi-
cation of all loop counters activated by that loop state-
ment. On the other hand, if an active loop counter is
indicated, control goes to the routine modifying that par-
ticular loop counter, so the modification of subsequently-
activated loop counters is omitted. In either case, if the
loop statement includes a limit formula, the loop-termi-
nation test is made.

8. Tables

A table is a matrix of item values. The rows of a table
are called entries, and an entry consists of the values of a
related set of different items. Typically, entry K
(ITEM’1(K), ITEM’2(K), ..., ITEM’N(K)) would
consist of values measuring the N pertinent attributes of
“object” K. Such an entry would be associated with other,
similar entries in a table, or list of entries.

All entries of a table usually have the same eomposition
and structure in the sense that each consists of a similarly
named and ordered set of index-related items, declared as
part of the table declaration. Variable entry structures can
be achieved, however, by using the technique of overlaying
items and by the inclusion of string items in the entry.

table-declaration ::= ordinary-table-declaration | like-table-dec-
laration | specified-entry-structure-table-declaration

8.1 OrpINARY TABLE DECLARATIONS. A table is declared
by a table declaration that includes an entry list of item
declarations, enclosed in BEGIN and END brackets. These
declare the items comprising an entry. Any of these items
may be assigned initial values by including a list of con-
stants after the item declaration, and they may be allo-
cated storage common to other items in the entry by in-
cluding overlay declarations. (These two topies will be
covered in the sections on initial value declarations and
overlay declarations.)

An individual value of a table item is designated by
item name and entry index, and where a table has k

7 Transfer of control into a loop statement will bypass the exe-
cution of at least one for-clause, so corresponding loop counters
will be inactive and their values undefined over the rest of the
loop statement.

Communications of the ACM 727

entries the numeric formula specifying entry index may
only range in value from O through k—1.
table-type ::=
entl‘y-type o= Serial-cntry—structure I Parallel—eutry—structure
paCking-mOde n=]Nu-iwuppacking I Medium-imm—packiug |
Densa-item—packing
entry-list ::= item-declaration o (null | BEGIN o 1-dimensional-
constant-list o« END) | entry-list o (entry-list | overlay-declara-
tion)
ordinary-table-declaration ::= TABLE o (null | nameg;iabie) ©
table-type o numberos.entries © (null | entry-type) o (null | packing-
mode) o $ o BEGIN o entry-list « END
Example:
TABLE AIRBASE’'WEATHER R8 SD $
BEGIN
AIRBASE’CODE H 3 "LETTERS” §
REPORT’HOUR A 5 U 0...23 "THOURS"” $
REPORT’MINUTE A 6 U 0...59 "MINUTES” §
WEATHER’CHANGE B "TRUE IF CHANGED
FROM LAST REPORT” $
ITEM CURRENT’SUMMARY S V(OPEN) V({INSTRUMENT)
V(CLOSED) $
ITEM FORECAST’SUMMARY S V(OPEN) V(IINSTRUMENT)
V(CLOSED) $
CEILING A9U0...511 " HUNDRED
FEET. MAXIMUM OF 511
MEANS UNLIMITED” $
VISIBILITY A 5 U 10.Al1...15.5A1 "NAUT'I-
CAL MILES. MAXIMUM
OF 15.5 MEANS UNLIM-
1TED” $
VISIBILITY’BLOCK S Y(NONE) V(FOG) V(DUST)
V(SMOKE) V(HAZE) $
BLOCK’AMOUNT S V(NONE) V(LIGHT)
V(MODERATE) V(HEAVY)

Variablc-lengtlx l Rigid-longth

ITEM
ITEM
ITEM
ITEM

ITEM

ITEM

ITEM

ITEM

$
PRECIPITATION S V(NONE) V(RAIN)

V(SNOW) V(SLEET)
V(HAIL) $

PRECIP’AMOUNT S V(NONE) V(LIGHT)
V(MODERATE) V(HEAVY)
$

ITEM RUNWAY’CONDITION S V(OK) V(WET) V(ICY)

V(SNOW) V(BLOCKED) $
END

A table name may be omitted from the declaration
when only individual table items are referred to in the pro-
gram, and never the entire table.

The V for Variable or R for Rigid table-length descriptor
indicates table type, and determines whether the number
of entries can vary during program execution.

Number of entries indicates the table’s maximum length
for a variable-length table, and its fixed length for a rigid-
length table.

The S for Serial or P for Parallel entry-structure de-
scriptor indicates entry type and determines one of two
possible storage configurations for the table. (If entry
type is omitted, the compiler-dependent, “normal’’ entry
type is assumed.) A k-word, serial-type entry is allocated
a block of £ serial, or consecutive, storage registers. A
k-word, parallel-type entry, on the other hand, is allocated
parallel, or similarly-located, storage registers in & separate
blocks.

The N for No, M for Medium, or D for Dense item-

ITEM

ITEM

728 Communications of the ACM

packing descriptor indicates a mode of storage allocation
for the items in an entry. (If packing mode is omitted, the
compiler-dependent, “normal” packing mode is assumed.)
No packing means that items are allocated storage in full
register units, so that each item in the entry will occupy
one or more consecutive registers; medium packing means
that storage is allocated in sub-register® units, with each
item stored in one or more consecutive sub-registers; dense
packing, finally, means that storage is allocated primarily
in bit-position units, so that each item occupies one or more
consecutive bit positions.

8.2 Like TaBrLE Drcrarations. In some cases, a pro-
gram’s environment must contain two or more instances
of tables with the same entry structure. Such tables may
be declared and named, using a previously-defined table as
a pattern, with a like table declaration, by adding a dis-
tinguishing letter or numeral to the pattern table’s name.
like-table-declaration ::= TABLE o nametpattern-table {letter |

numeral) o (null | table-type o numberscntries) © {null | entry-

type) o (null | packing-mode) o L © $

Examples:
TABLE AIRBASE’WEATHERO L $
TABLE AIRBASE'WEATHERX R1NL $

The composition and structure of the like table’s entries
are taken as being generated by the declarations describing
the pattern table’s entries, with the exception that all
item names are suffixed with the distinguishing letter or
numeral.? The like table may have its own descriptions of
type and length, entry structure, and item packing, how-
ever, or by omission, it may retain those of the pattern
table.

8.3 SrrciFiep ENTRY-STRUCTURE TABLE DECLARATIONS.
It is often necessary to declare a table with a specific and
predetermined (and even variable) entry structure. The
specified entry-structure table declaration provides com-
plete control over the structure of table entries by means
of the structured item declaration and the string item
declaration.
structured-item-declaration ::= ITEM o nameos-iem © description
o NUMbeTryord-index © NUMbETit-index © {Null | packing-mode) o §
string-item-declaration ::= STRING o namecsiwm ° description
o numbeTryord-index © NUMbETryitindex © {(null | packing mode) o
numbertrequency-of-occurrence © NUMDETo-items-por-word © $
Examples:
ITEM KEY A6U3 12§
STRING BEAD H24 00D 13 $
Several elements must be added to complete the de-
seription of items for specified entry-structure tables. Such
descriptions also contain a word-index number and a bit-
index number. Together, these indicate the origin, in terms
of word within entry and bit within word,!? of the storage

8 Many computers have instructions that, by effectively par-
titioning memory registers into two or more segments, greatly
facilitate extracting values from or inserting them into these “‘sub-
register’’ segments.

9 Names so constructed are subjeet to the normal requirements
for uniqueness.

10 Word 0 bit 0 indicates the first bit position in the entry.

Volume 6 / Number 12 / December, 1963

cell containing the item. Packing mode may be included
in such an item description to indicate whether this storage
cell consists of one or more registers (no packing), of one
or more subregisters (medium packing), or of one or more
bit positions (dense packing).

A string item occurs in a specified entry-structure table
not just once but many times per entry. The number of
such oceurrences may vary from entry to entry. (Keeping
track of this variation is most commonly done by de-
claring and maintaining a control item, as part of the
entry, in which a count of the number of occurrences is
kept.) Two additional elements are appended to the de-
seription of string items. The first indicates frequency of
occurrence in terms of the number of words to the next
occurrence of the string item in the entry.! The second
indicates the number of occurrences of the string item per
word.

In designating the value of any particular string item
in a specified entry-structure table, a 2-component index
list must be appended, as a subscript, to the string item’s
name. The first component distinguishes the item within
the entry (starting with a 0 index), and the second dis-
tinguishes the entry itself. Structured item declarations
and string item declarations are incorporated into strue-
tured entry lists and thus into specified entry-structure
table declarations.
structured-entry-list ::= (structured-item-declaration | strue-

tured-item-declaration « BEGIN o 1-dimensional-constant-list

o END | string-item-declaration | string-item-declaration o

BEGIN o 2-dimensional-constant-list e« END) o (null | structured-

entry-list)
specified-entry-structure-table-declaration ::= TABLE o (null |

NAaMe of-1able) © table-type o number,sentries © (null | entry-type) o

numberos.words-per-entry © $ © BEGIN o structured-entry-list o

END

Ezxample, which declares a table each of whose entries
associates a topic-phrase with a variable number of docu-
ment references:

TABLE AUTOMATIC’INDEX V20000S1$
BEGIN

ITEM TOPIC’PHRASEH33000D $

ITEM NUMBER’OF’REFERENCES A12U524D $

STRING DOCUMENT’REFERENCE A 18U 600D 12§
END

Assuming a 36-bit word-size, TOPIC’PHRASE starts
in word 0 bit 00 of each entry; NUMBER"OF’REFER-
ENCES starts in word 5 bit 24 ; and the first DOCUMENT"-
REFERENCE starts in word 6 bit 00, appearing there
and in each word thereafter, twice per word—to the num-
ber of references specified.

For fixed-length entries, the number of words per entry
in a specified entry-structure table declaration simply indi-
cates entry length. For variable-length entries, however,
it must indicate some common divisor of all the different
possible entry lengths. (Often, this is most conveniently

1'Where a frequency of occurrence k is indicated, every kth
word after the first occurrence of the string item contains similarly
allocated occurrences.

Volume 6 / Number 12 / December, 1963

one.) In either case, the indicated number of words per
entry is used as a factor both in allocating and in indexing
the table.!?

The other elements in a specified entry-structure table
declaration have the same meaning they would have in an
ordinary table declaration. Serial entry-type must be indi-
cated for a table with variable-length entries, though.
Notice that overlay declarations are not needed in specified
entry-structure table declarations, since storage allocation
within the entry is explicitly indicated.

9. Functional Modifiers

Functional modifiers are, in a sense, extensions to basic
JoviaL, which is essentially an item-manipulating language.
They facilitate the manipulation both of larger data ele-
ments (i.e., entries and tables) and of smaller data ele-
ments (i.e., segments of the machine-language symbols
representing item values).

9.1 Tae NENT Mobrrier. A vital parameter in table
processing is number of entries. The functional modifier
NENT allows this unsigned, integral value to be designated
for variable-length tables, and denoted for rigid-length
tables.

numeric-variable ::= Nuymver-of ENTries © (©
Nameoi-variable-length-table-or-table-item ©)
numeric-formula ::= Numper-of ENTres © (©

NAMEot-rigid-length-table-or-table-itern ©)

Example, which records the addition of a new entry to
the (variable-length) PAYROLL table:
NENT (PAYROLL) = NENT (PAYROLL) 4 18

For variable-length tables, NENT serves as a counter
that must be maintained by the program itself whenever
it changes the table’s length. (Initially, the value desig-
nated by NENT for a variable-length table is undefined.)
For rigid-length tables, on the other hand, NENT serves
as a preset compilation parameter in denoting table-length.

9.2 Tur NWDSEN Mobirigr. Another parameter in
table processing is the amount of storage allocated to a
table entry (and thus to the entire table). This unsigned,
integral value, which is constant throughout the execution
of the program, is expressed in number of words (or
registers) per entry.
numerie-formula ::= Number-of WorDSper ENgry 0 (0

DAMEoftable-or table-item ©)

Ezxample:
PAYROLL’LENGTH = NWDSEN (PAYROLL) * NENT (PAY-

ROLL) $

Though ordinarily seldom used, NWDSEN is needed in
executive programs that do dynamic storage allocation.

9.3 Tue ALL MobrFiER. A very common loop in JovIiAL
programming cycles through an entire table, processing

12 In a Serial entry-type, specified entry-structure table with 7
entries and j words per entry, entry k refers to the entry beginning
in word j*k of the (¢*j)-word table. In a similar, Parallel entry-
type table, entry k begins in word % and continues in words k + ¢,
k + (2+1), k 4 (3%1), ete.

Communications of the ACM 729

one entry each pass. Such a loop can be created with a

for-clause that uses the ALL modifier.

for-clause ::= FOR o loop-counter e = o ALL o (o
NAMEof.table-or-table-item ©) © $ - :

Ezample:
FORT = ALL (PAYROLL) $

The use of a for-clause containing the ALL modifier creates
a loop with an undefined direction of processing; that is,
entry 0 is processed either on the first or on the last pass
through the loop.

9.4 Tae ENTRY Mobirier. As mentioned before, a
table entry is a conglomeration of related items. The
ENTRY modifier allows an entry to be treated as a single
value, represented by a single, composite!* machine-lan-
guage symbol.
entry-variable ::= ENTRY o (o nameoiiable-or-table-item © ($ ©
indexoi-encry ° $) °)
entry-formula ::= 0 | entry-variable
boolean-formula ::= entry-variable o (EQ | NQ) o entry-formula
assignment-statement ::= entry-variable o = o entry-formula o $
exchange-statement ::= entry-variable o« == o entry-variable o $
LEzample, which eliminates “empty’ entries from the
PAYROLL table:
FORI = ALL (PAYROLL) $
BEGIN SEEK’EMPTY.
IF ENTRY (PAYROLL(SI$)) EQ0$
BEGIN
NENT (PAYROLL) = NENT (PAYROLL) —1§
IF I LS NENT (PAYROLL) $
BEGIN
ENTRY (PAYROLL(I)) == ENTRY (PAYROLL
(SNENT(PAYROLL)S)) $
GOTO SEEK’EMPTY §
END END END

The index subscripting the table or table-item name
distinguishes the entry from others in the table. An entry’s
value may be denoted by 0 if all its items have values
represented by zero; otherwise its value is not denotable.
Comparing (for equality or inequality), assigning, and
exchanging of entry values all operate as if on unsigned
integers.!4

9.5 Tae BIT axp BYTE Mobiriers. The machine-lan-
guage symbol representing any item’s value may be con-
sidered a string of bits; or, in the case of literal items, of
6-bit bytes (or characters). In either case, both bits and
bytes are indexed from left to right, starting with 0.
numerie-variable ::= BIT o ($ o indeXof-riest-bic © (null | , o
indexof—number-of—hits) ° $) ° (° NAMEof-item © <Illl11 | Sllbscript> ©)
literal-variable ::= BYTE o ($ o indeXof-first-byte © (null | , o in-
dexXornumber-o-bytes) © $) o (© NAMEof-titeral-item © (nUIl | subseript)
°)
Ezample:
CONVERT’CARD’IMAGE. ”A ROUTINE TO CONVERT
FROM A PUNCHED CARD IMAGE TO AN 80-CHARACTER,
HOLLERITH-CODED, LITERAL VALUE. ILLEGAL *UNCH
COMBINATIONS ARE NOT REJECTED AND MAY CAUSE
SPURIOUS RESULTS.”

13 Composite as stored, not as declared, since item overlays and
unused cells are not unserambled.

1 When different-size entries are involved, then, the shorter is
(in effect) prefixed by registers containing zero.

730 Communications of the ACM

BEGIN
ARRAY PUNCH 12 80 B $ ITEM CARD H 80 $ ITEM COLUMN
H1S$
FORJ=10,1,79%
BEGIN
COLUMN = 0(00) $
FOR1=0,1,118%
BEGIN
IF PUNCH($I,JS) $
BEGIN
IF I LQ 2 $ BIT($0,68)(COLUMN) = BIT($0,6%)
(COLUMN) 4+ (I41) *x020) $
IF I GR 2 $ BIT($0,6%)(COLUMN) = BIT($0,6%)
(COLUMN) 4+ (I—2) $
END END
BYTE(J) (CARD) = COLUMN $
END END
The BIT modifier allows any segment of the bit-string
representing the value of any item to be designated as an
unsigned, integral variable. Similarly, the BYTE modifier
allows any segment of the byte-string representing the
value of any literal item to be designated as a literal
variable. The first bit or byte of the segment and the
number of bits or bytes in the segment are specified by
the 2-component index list appended to the modifier. If
a one-bit or one-byte segment is desired, the second com-
ponent of the index list, specifying number of bits or
bytes, may be omitted.

9.6 Tue MANT axp CHAR Mobrriers. A floating-point
machine-language symbol representing a numeric value
consists of: a mantissa, which is a signed fraction repre-
senting the significant digits of the value; and a character-
istic, which is a signed integer representing the base two
exponent of an implicit sealing factor for the mantissa.
Either component of any floating-point item can be desig-
nated as a fixed-point variable.
numeric-variable ::= (MANTa | CHARGcteristic) © (©
NAMEf-floating-point-item © {NUIL | subseript) o)
Ezxample, which specifies the fixed-point value of the
floating-point item, BETA:
MANT (BETA) * 2 %+ CHAR (BETA)

9.7 Tue ODD Mob1irier. In numeric computations, it is
occasionally necessary to determine whether the least sig-
nificant bit of the machine-language symbol representing
the value of a loop counter or of a numeric item represents
a magnitude of one, or of zero—for integers, in other words,
whether the value is odd or even.!®

boolean-variable ::= ODD o (o loop-counter o) | ODD o (o

NAME of-flonting-or-fixed-point-item © (DUl | subseript) o)

Examples:
oDD(I)

ODD(GAMMA (X,Y,Z))

With the ODD modifier, the least significant bit of any
loop counter or floating- or fixed-point item can be desig-
nated as a Boolean variable: True if it represents a magni-
tude of one; False if it represents a magnitude of zero.

15 ODD is somewhat of a misnomer when applied to non-integral
values.

Volume 6 / Number 12 / December, 1963

10. Miscellaneous Declarations and Statements

10.1 Intr1anL VALUE DEcraraTIiONS. It is often necessary
to declare items with specific initial values, for use as:
preset parameters, arrays and tables of constants, or initial
data. The initial value of a simple item may be denoted,
within either an item declaration or a mode declaration,
by a single constant, which must denote a value assignable
to the item. This constant may be inserted after the item
description and the P for Preset descriptor, or it may
replace these entirely for numeric and literal values. An
array item, table item, or string item, on the other hand,
is initialized by a constant list, appended to the declara-
tion. This constant list must correspond both in dimension
and assignability to the item it presets.

1-dimensional-constant-list ::= constant o (null | 1-dimensional-
constant-list)
n-dimensional-constant-list ::= BEGIN o n—1-dimensional-con-

stant-list « END o (null | n-dimensional-constant-list)

initial-value-declaration ::= (ITEM o nameof-item | MODE) o
(description © Preset © constant | numeric-constant | literal-
constant) o $ | array-declaration o BEGIN o n-dimensional-con-
stant-list o END | table-declarationcentaining-constant-lists
Ezamples:

ITEM ERROR 1.234E—5 §

ITEM READYBPO0$

MODE A1 UP ORI $

ARRAY LETTER’A 65 B $

BEGIN
BEGIN 0010 0END
BEGIN 0101 0 END
BEGIN 10001 END
BEGIN11111END
BEGIN 10001 END
BEGIN10001END

END

TABLE R 12 §

BEGIN

ITEM MONTH H 3 $ BEGIN SH(JAN) 3H(FEB) 3$H(MAR)
3H(APR) 3H(MAY) 3H(JUN) 3H(JUL) 3H(AUG) 3H(SEP)
3H(OCT) sH(NOV) 3H(DEC) END

ITEM LENGTH A 5 U $ BEGIN 31 28 31 30 31 30 31 31 30 31
30 31 END

END

Adopting the convention that a list of individual con-
stants i1s a 1-dimensional constant list, an n-dimensional
constant list consists of a string of n— 1-dimensional con-
stant lists, each enclosed in BEGIN and END brackets.
Individual constants in a constant list are associated with
individual array, table, and string items as follows: The
kth component of an index list subscripting the item name
serves to index the elements of a k-dimensional constant
list. (To make this rule valid for multi-dimensional arrays,
however, the positions of the first and second components
of the index list for such arrays must be considered as
being reversed—thus: second component, first component,
third component, fourth component, etc.¢)

The constants in a constant list must all be the same

16 This rather strange reversal retains the convention of in-

dexing first by row then by column, while allowing rows to be
written (as 1-dimensional constant lists) across the page.

Volume 6 / Number 12 / December, 1963

type and they must, of course, denote values that are
assignable to the items being initialized. Partial initiali-
zation is possible. A constant list that contains k& elements
(constants or constant lists) where it could have more will
initialize only the first & corresponding items or item sets,
leaving the remaining values undefined.

10.2 Overray DecraraTions. An overlay declaration,
by allocating blocks of storage space, indicates the ar-
rangement, in memory, of previously-declared items,
arrays, and tables.

block-list ::= nameot item-or-array-or-table © (null [, o block-list)
overlay-list ::= block-list o (null | = o overlay-list)
overlay-declaration ::= OVERLAY o overlay-list o §

Ezamples:

OVERLAY HEAD, BODY, TAIL $§
OVERLAY ALPHA=BETA=GAMMA $
OVERLAY DATE=DAY ,MONTH,YEAR $

The data elements named in a block list are allocated,
in sequence,!” a block of consecutive units of storage. For
arrays and tables, these units are full memory registers.
For items, the units are registers, subregisters, or bit po-
sitions—depending on whether the item packing mode is
No packing, Medium packing, or Dense packing.!® Each
block listed in an overlay declaration is allocated storage
beginning at a common, though undefined, origin. Each
block thus “overlays” the other blocks listed in the decla-
ration.

A name may appear only once in an overlay declaration,
but may appear in other overlay declarations if logical
inconsistencies are avoided. To arrange storage allocation
for table items, the overlay declaration must appear within
the ordinary table declaration. (However, such an overlay
declaration may contain only item names previously de-
clared within the same entry list.)

10.3 DeEriNe DrcLarATIONS. A define declaration estab-

lishes an equivalence between a name and a string of signs

by effectively causing the sign string to be substituted for
the name wherever it may subsequently occur as a separate

Joviar symbol. This allows the programmer to abbreviate

lengthy expressions, to make simple additions to the lan-

guage, and to create symbolic parameters.
define-declaration ::= DEFINE o name o ”
sign-stringexscept-the-7-symbot ” © $

Ezamples:

DEFINE CARD’SEQUENCE "V(JOKER) V(ACE) V(DEUCE)
V(TREY) V(FOUR) V(FIVE) V(SIX) V(SEVEN) V(EIGHT)
V(NINE) V(TEN) V(JACK) V(QUEEN) V(KING)” $

DEFINE UNSIGNED "U” $

DEFINE THE ” " §

DEFINE RANK 785" §

In using define declarations, several points should be
remembered: (1) The sign string being defined should
contain at least one sign (which may be a blank) but may
not contain a ’” symbol since this, of course, terminates it.

17 Except for packed table items, which may be rearranged for
storage efficiency.

12 Qutside of ordinary table declarations, “normal”’ item pack-
ing mode is compiler-dependent.

Communications of the ACM 731

(2) No comments may appear in a define declaration.
(3) A defined name should be used only in a context where
the sign string it defines will comprise an acceptable
JoviaL expression. (4) Circular definitions are possible and
must be avoided. (5) A defined name may be redefined at
a later point in the program listing, and the latest definition
will thereafter be substituted for occurrences of the name.

10.4 Stop STATEMENTS. A stop statement halts or in-
definitely delays the sequence of statement executions, and
usually indicates an operational end to the program in
which it appears. If the program is restarted, execution
will resume with the next statement listed unless some
other statement is named in the stop statement.
::= STOP + § | STOP o
NAMECof-pext-statement-to-be oxecuted © P
Ezamples:
STOP $
STOP TASK’4 $
10.5 DirecT-cODE STATEMENTS. A direct-code statement
allows the programmer to include a routine coded in a
“direct”” or machine-oriented programming language
among the statements of a Joviar program. So that such
a routine may manipulate JoviaL item values, it may
include a Joviar-like assign statement. Such a statement
assigns the value contained in the “accumulator” (an un-
defined machine register) to be the value designated by an
item—or vice versa.
accumulator ::= Accumutater ((null | signed number,. sraction-bits))
assign-statement ::= ASSIGN o accumulator ¢ = o nameoi-item
o (null | subseript) o $ | ASSIGN © nameos.item © (null | subscript)
o = o accumulator o §
direct-code ::= (sign-stringexcopt-the-JOVIAL -bracket | a88ign-state-
ment) o (null | direct-code)
direct-code-statement ::= DIRECT o direct-code o JOVIAL
The accumulator is designated by the letter A followed
by a parenthesized number indicating the number of
fractional bit positions within the register—usually zero
for all but fixed-point numeric values. If the integer is
omitted, the register contains a floating-point numeric
value.
The effect of a direct-code statement, being machine
dependent, is undefined.

stop-statement

10.6 ALTERNATIVE STATEMENTS. A Boolean formula and
the associated simple or compound statement following
it together constitute an alternative. An alternative state-
ment, consisting mainly of a string of alternatives sepa-
rated by the ORIF symbol, selects for execution the one
such statement associated with the first True Boolean
formula in the string, if any. The effect of an alternative
statement is therefore equivalent to that of the selected
statement by itself.!®

alternative ::= boolean-formula o $ o (simple-statement | com-
pound-statement)

alternative-list ::= ORIF o alternative o {(null | alternative-list) |
name o . o alternative-list

alternative-statement ::= IFEITH,, o alternative o alternative-
list « END

19 Jgnoring function side-effects.

732 Communications of the ACM

Ezample:
IFEITH NUMBER EQ 0 $SIGN =08§
ORIF NUMBER GR 0 $ SIGN = +1§
ORIF1$SIGN=~-—18§
END
Statement names can be inserted in the string of al-
ternatives so that an appropriate go-to statement can skip

the initial ones.

10.7 CLosED STATEMENTS. A closed statement is a closed
and parameterless subroutine whose execution may only
be correctly invoked by an appropriate go-to statement.
The normal successor to a closed statement is the state-
ment listed after the invoking go-to statement.

closed-statement ::= CLOSE o nameo¢-closed-statement © $ o (simple-
statement | compound-statement)
Ezxample:

CLOSE SHELL’SORT $ “A CLOSED STATEMENT WHICH
SORTS A TABLE’S ENTRIES BY KEY ITEM, USING
SHELL’S SORTING ALGORITHM AS DESCRIBED IN ACM
COMMUNICATIONS, JULY 1959.”
BEGIN
DEFINE KEY “name of table item” $ “TO BE FILLED IN BY
THE USER BEFORE COMPILATION.”
IF NENT (KEY) GR1$
BEGIN
FORM = NENT (KEY)/2, —(M + 1), 1 $
BEGIN
FORJ =1,1, NENT (KEY)—M §
BEGIN
FORI=J—1,—M, 0%
BEGIN
IF KEY(I) GR KEY$I4+M$) $ ENTRY (KEY ($I8))
== ENTRY (KEYSI4+MS$)) $
END END END END END
In using any closed statement, the programmer must
see that it is entered only by a go-to statement referring
to it by name (e.g., GOTO SHELL’SORT §,) never by
the name of any of the statements within it, and never as
part of the normal, listed sequence of statement executions.
Furthermore, while a closed statement may call other
closed statements, it may not call itself—either directly or

indireetly.

10.8 RETURN STATEMENTS. A return statement indicates
a transfer of control to the implicit exit routine that is
automatically inserted after the last listed statement within
a closed statement or a procedure. A return statement
may therefore appear only within a closed statement or a
procedure.

return-statement ::= RETURN o §

Ezample:
RETURN $

11. Procedures

A procedure is a self-contained subroutine with a fixed
and ordered set of parameters. A procedure is permanently
defined by a procedure declaration and invoked either by
a procedure statement or by a function.

The actual parameters of a procedure statement or a
funetion are either (1) values, as specified by input for-
mulas or designated by output variables, or (2) names,

Volume 6 / Number 12 / December, 1963

indicating arrays, tables, or statements. The formal pa-
rameters of a procedure declaration are ‘“‘dummy’’ names,
corresponding to the actual parameters of the procedure
statement or the function.

actual-input-parameter-list ::= (formula | name,s.array-or-table} ©
(null | , o actual-input-parameter-list)

formal-input-parameter-list ::= name o (null |, o formal-input-
parameter-list)

actual-output-parameter-list ::= (variable | name,s array-or-tabis |
NAMEot-statement © ») © {nUll |, o actual-output-parameter-list)

formal-output-parameter-list ::= (name |name o.) o (null |,

formal-output-parameter-list)

The actual parameters of a procedure statement or a
function must correspond to formal parameters of the pro-
cedure declaration both in number and in sequence. (Actual
parameters may not, therefore, be omitted.) In addition,
an actual parameter must agree with its corresponding
formal parameter—in data type (i.e., numerie, literal,
status, or Boolean) for “value’” parameters, and in gram-
matical usage for “name’ parameters. Note that an output
parameter which is or which corresponds to a statement
name, must be followed by the . (period) separator.

11.1 ProcepURE DEecrLArRAaTIONS. A procedure declara-
tion consists of : a heading, which declares the procedure’s
name and lists its formal parameters, if any; a list of
declarations, which describe the information environment
peculiar to the procedure, if any; and a compound state-
ment, which forms the body of the procedure.

declaration-list ::= declaration o (null | declaration-list)
formal-parameter-list ::= formal-input-parameter-list | = o
formal-output-parameter-list | formal-input-parameter-list o
= o formal-output-parameter-list
procedure-declaration ::= PROC,qure © NAMEps-procedure © {null | (o
formal-parameter-list o)) o § o (null | declaration-list) o ecom-
pound-statement
Ezxamples:
PROC SET’DIAGONAL (VALUE=MATRIX,NONE.) §
"WHICH ASSIGNS THE INPUT VALUE TO THOSE ITEMS
ON THE MAIN DIAGONAL OF ANY 50 X 50 FLOATING-
POINT MATRIX THAT ARE ROUGHLY EQUAL TO THE
INPUT VALUE. IF NO ASSIGNMENTS ARE MADE, THE
PROCEDURE EXITS TO "NONE’.”
ITEM VALUE F R $§
ARRAY MATRIX 50 50 F R §
ITEM NO’ASSIGNMENT B $
BEGIN
NO’ASSIGNMENT = 1§
FORI =0,1,49 %
BEGIN
IF CHAR (VALUE) EQ CHAR (MATRIX(L,I)) $
BEGIN
MATRIX($1,I$) = VALUE $§
NO’ASSIGNMENT = 0 §
END END
IF NO’ASSIGNMENT $ GOTO NONE $
END
PROC RANDOM $ "FUNCTION. MULTIPLICATIVE
PSEUDO-RANDOM NUMBER GENERATOR.”
ITEM RANDOM A 48 U P 5391821890627261 $
ITEM TEMPORARY A9 U $
BEGIN
TEMPORARY = RANDOM % RANDOM $§
RANDOM = BIT($24,48%)(TEMPORARY) $
END

Volume 6 / Number 12 / December, 1963

Those formal parameters corresponding to actual,
“value” parameters must be declared as (simple) items in
the declaration list. Those corresponding to arrays or
tables must be declared in the declaration list as arrays or
tables, to provide the procedure with a fixed definition of .
their structure, as only their storage locations are trans-
mitted to the procedure.

Names declared inside a procedure, both formal pa-
rameters and otherwise, are defined for the procedure only.
They bear no relation to identical names used outside the
procedure—though outside names can, of course, be used
inside procedures.

JoviaL procedures may invoke other procedures, either
through functions or through procedure statements. How-
ever, they may not invoke themselves, either directly or
indirectly.

In order for a procedure to specify a function value, the
procedure name itself must be considered the sole, formal
output parameter. It must be declared as an item in the
procedure’s declaration list and it should be assigned the
function value during the execution of the procedure.

11.2 ProcEDURE STATEMENTS. To execute the process de-
fined in a procedure declaration, it is necessary to invoke
the procedure by a procedure statement (or by a function).
A procedure statement, which may be thought of as an
abbreviated description of the process it invokes, has a
format similar to that of the heading part of a procedure
declaration.
actual-parameter-list ::= actual-input-parameter-list | = o
actual-output-parameter-list | actual-input-parameter-list o =
o actual-output-parameter-list
procedure-statement ::= nameot-proceaure © {1Ull | (o actual-param-
eter-list o)) o $
Examples:
SET’DIAGONAL (0. = ALPHA, ERROR.) §
COMPLEX’ADD (REAL(1)+1,IMAG (1), BETA #2,
BETA=REAL(SIS$),IMAG (SI$)) $
The procedure is executed as if its formal parameters
either designated actual-parameter values, or were re-
placed by actual-parameter names. To effect this, formal
input-parameter items are assigned corresponding actual
input-parameter values prior to the execution of the pro-
cedure, and formal output-parameter item values are as-
signed to corresponding actual output-parameter variables
after this execution. (For this purpose, the execution of a
procedure is considered terminated only by the execution
of the last statement listed in the procedure declaration, by
the execution of a return statement, or by the execution of
a go-to statement containing a formal output parameter
that denotes a statement name.)

12. Switches

A switeh is a routine for computing a statement name
and, thus, for deciding among several alternate sequences
of operation. It is permanently defined by a switch decla-
ration and invoked by a switch call. A switch declaration
consists primarily of a switch list, whose major elements

Communications of the ACM 733

are statement names or switch calls. The routine invoked
by a switch call selects one of these elements, thus de-
termining (perhaps by another switch) the “value’ of the
switch.

Joviar has two kinds of switches: the index switch,
whose value is determined by an index specified in the
switch call; and the item switch whose value is determined
by the value of an item named in the switch declaration.

index-switeh-list : := (null | nameos_statement | sSWiteh-call) o
{null |, o index-switch-list)
item-switch-list ::= constant o = o (name,t-statement | SWitch-call)

o (null |, o item-switch-list)

switch-declaration ::= SWITCH o nameot-index-switeh © = © (©
index-switch-list o) o $ | SWITCH o name,s_item-switeh © (©
NAMEof-item-or-file ©) © = o (o item-switch-list o) o §

switch-call ::= nameos index-switeh © ($ © IndeXsor-gwiten-1ist © $)
| naMes item-switen © {null | subseripteor-switeh-itemy
Examples:

SWITCH GET’RATE = (GET’RATE(SDAY$),
SUNDAY’RATE,WEEKDAY’RATE,WEEKDAY’RATE,
WEEKDAY’RATE,WEEKDAY’'RATE,WEEKDAY’RATE,
SATURDAY’RATE) $

GOTO GET’RATE(1) $
The index in an index-switch call selects one of the n

positions in the switch list of the corresponding switch

declaration. (This index may therefore range from 0

through n—1 only.) Any of the positions in an index-

switch list may be empty (null) thus effectively specifying
the first statement listed after the switch-invoking go-to
statement.

The item name given in an item-switch declaration and
the index list (if any) subseripting the switch name in the
call together designate an item value. This value selects
from the item-switch list in the declaration the statement
name or switch call paired with the first constant in the
list that denotes a value equal to it. If no such constant is
listed in the declaration, then the switch effectively speci-
fies the first statement listed after the switch-invoking
go-to statement. (The use of a file name in an item switch
is treated in Section 13.2, Testing and Positioning Files.)

A switch is invoked, directly or indirectly, by a go-to
statement and may compute the name of a closed state-
ment whose normal suceessor would be the first statement
listed after the go-to statement.

13. Input-Output and Files

Many data storage devices impose aceessing restrictions
in that storing or loading an individual value may, for
efficiency, ordinarily involve the transfer of an entire block
of data. Such devices are termed exfernal storage devices,
as contrasted with the ¢nternal memory of the computer.
To allow a reasonably efficient description of input-output
processes, therefore, all data entering or leaving the com-
puter’s internal memory is organized into files. A file is
thus a body of data contained in some external storage
device, such as punched cards or tape, or magnetic tape,
dises, or drums.

13.1 FiLe DecrLaraTions. A file is a list of records, which
are themselves strings of bits or of 6-bit, Hollerith-coded

734 Communications of the ACM

bytes. A file’s records are either all binary or all Hollerith,
and they are generally homogeneous in size, content, and
format. (When heterogeneous records are organized into a
file, the program must provide for distinguishing among
them.) Record format is not described in the file decla-
ration, however, since it is determined by the input or
output records in the statements that read or write the
file.

ﬁle—declaration ::= FILE o nameyi-file © <Binary ‘ Hollerith) °
numberss records © {Variable-record-length | Rigid-record-length) ©
NUMbeT ot bits-or-bytes-per-record © 8tatUs-list o namMeor-storage-dovice © $
Ezxamples:

FILE INVENTORY B 10000 V 480 V(UNREADY) V(READY)
V(BUSY) V(ERROR) TAPEDRIVE’A §

FILE LINE’OF’PRINT H 500 R 120 V(UNREADY) V(READY)
LINE’PRINTER $
In the file declaration, both number of records and

number of bits or bytes per record may be estimated
maximums. The listed status constants are associated with
the file name and denote the possible states of the storage
device containing the file.2® The storage-device name indi-
cates, in compiler-dependent terms,?! the particular storage
device containing the file.

13.2 Tesring anp Posimionivg Fines. The status of a
file is denoted by one of the status constants listed in the
declaration. These are associated with the file name, which
may be considered as a status item that is automatically
updated prior to any comparison according to the current
state of the storage device containing the file. File status
may thus be tested with a relational Boolean formula, or
by means of a call to an appropriate 7tem switch.
Examples:

SWITCH CHECK’INVENTORY’FILE (INVENTORY) =
(V(UNREADY)=PROCESS’FILE’END,V(BUSY)=WAIT,
V(ERROR)=PROCESS’ERROR) $

CLOSE WAIT $ BEGIN STEPL. IF INVENTORY EQ
V(BUSY) $ GOTO STEP1 $ STEP2. GOTO
CHECK’INVENTORY'FILE $ END
A Joviar file is a self-indexing storage device, meaning

that the record available for transfer to or from the file

depends on the file’s current position. The records of an
n-record file are indexed from 0 through n—1, and the
index of the record currently available for transfer is
designated, as file-position, with the functional modifier

POS, operating on the name of an active?? file. File position

ranges from O (indicating “rewound’) thru » (indicating

“end-of-file””). The transfer of a record to or from a file

automatically increments the file position by one. Further-

more, where the storage device allows, file position is a

20 Storage-device names and the number and meaning of their
possible states are compiler-dependent, so that anyone wishing
to declare a workable file must refer to the pertinent documenta-
tion for a particular JoviaL compiler.

21 This name may indicate such things as: drum or disk address;
file-index for multi-file tapes; ete.

22 An active file is one that has been “‘activated” by the exe-
cution of an open-input or an open-output statement, as deseribed
in the following seections.

Volume 6 / Number 12 / December, 1963

variable that may be altered by the assignment of an
arbitrary numeric value. The file is then called an address-
able file, as opposed to a serial file, where such a general
positioning operation is to be avoided as impossible or in-
efficient.

numerie-variable

Ezxample:
POS (INVENTORY) =0 §

= POSition ° (© NAaMEqf-active-file ©)

13.3 InpuT STaTEMENTS. A file may be read, one record
at a time, by the execution of a series of input statements.
The first statement executed in such a series must be an
open-input statement, which activates the file, and the
last must be a shut-input statement, which deactivates it.
Input records so read may be variables, entire arrays,
entire tables, sequences of table entries, or individual table
entries,

input-record ::= variable | nameos array | DAME i-table | NAMEot-table

o ($ o indeXot first-entey © vov © INAEXot last-entry © $) | NAME,t-table ©

(8 o indeXotecntry © $)
input-statement ::= OPEN o INPUT o nameos jnactive-file °

(null | input-record) o § | INPUT o nameos.active-file © input-

record © $ | SHUT o INPUT o nameos-getive-rite © (null | input-

record) o $

Ezxample:

BEGIN

OPEN INPUT INVENTORY $

PROCESS’INVENTORY. INPUT INVENTORY ARTICLE $
GOTO CHECK’INVENTORY'FILE $

GOTO PROCESS’ARTICLE §

GOTO PROCESS’INVENTORY §

PROCESS’FILE’END. SHUT INPUT INVENTORY $

END

A read operation transfers the string of bits or bytes
comprising a file record from the file into the computer’s
internal memory, to represent the value or values of a
designated input record. A read is terminated when the
entire input record has been represented. (Any bits or
bytes left in the file record go unread and are skipped
over.) A read is also terminated when the string of bits or
bytes of the file record is exhausted. (The remainder of the
input record, if any, is undefined.)

An open-input statement activates an inactive file and
initializes its position to zero. A shut-input statement de-
activates an active file. Any input statement that desig-
nates an input record initiates a read operation that will
transfer a record from the file into the computer’s internal
memory, thus incrementing file-position by one.

If the (compiler-dependent) file characteristics permit,?3
an input or shut-input statement may involve a file acti-
vated by an open-output statement.

13.4 Ourpur StratEMENTS. A file may be written, one
record at a time, by the execution of a series of output
statements. The first statement executed in such a series

28 Some files are write-only in type.

Volume 6 / Number 12 / December, 1963

must be an open-output statement, which activates the

file, and the last must be a shut-output statement, which

deactivates it. Output records so written may be numeric

or literal constants, variables, arrays, etc.

output-record ::= numeric-constant | literal-constant | input-
record

output-statement ::= OPEN o OUTPUT o nameos.insctive-tile ©

(null | output-record) o $ | OUTPUT o nameos.active-file ©

output-record o $ | SHUT o OUTPUT o nameot-active-file ©

(null | output-record) o $

Ezamples:

OPEN OUTPUT PERSONNEL’FILE $
OUTPUT PERSONNEL’FILE EMPLOYEE’RECORD

($L...14508) $
SHUT OUTPUT PERSONNEL’FILE EMPLOYEE’RECORD

$L... NENT(EMPLOYEE’RECORD)-1%) $

A write operation transfers the string of bits or bytes
representing a designated output record from the com-
puter’s internal memory out onto the file, as a file record.
A write is terminated when the entire output record has
been transferred. (For rigid record-length files, the re-
mainder of the file record, if any, is undefined.) A write is
also terminated when the number of bits or bytes trans-
ferred equals the declared maximum file-record size.

An open-output statement activates an inactive file and
initializes its position to zero. A shut-output statement
deactivates an active file. Any output statement that
designates an output record initiates a write operation
that will transfer a record from the computer’s internal
memory out onto the file, thus incrementing file-position
by one.

If the (compiler-dependent) file characteristics permit,?
an output or shut-output statement may involve a file
activated by an open-input statement.

14. Programs

A JoviaL program is a list of declarations and statements
enclosed in the START and TERM brackets. If a state-
ment name is not provided after the TERM, the first
statement in the program’s execution sequence is the first
statement listed that is not part of a procedure declaration.
And if this first-listed statement is named, its name can
also be considered as the name of the program. The $
separator indicates the typographic end of the program.

program ::= START o (null | declaration-list) o
{null | nameot.program © . © statement-list « TERM o
{(null | nameor.first-statement-to-bo-executed) ©

REFERENCES

1. Preliminary report—international algebraic language. Comm.
ACM 1,12 (1958).

2. ENcLunp aNp Crark. The Clip translator. Comm. ACM 4
(Jan. 1961).

3. Revised report on ALGOL 60. Comm. ACM § (Jan. 1963).

2 Some files are read-only in type.

Communications of the ACM 735

accumulator (10.5) 10.5

actual-input-parameter-list (11) 5.3.1,
11, 11.2

actual-output-parameter-list (11) 11,
11.2

actual-parameter-list (11,2) 11.2

ALL 3.1,93

alternative (10.6) 10.6

alternative-list (10.6) 10.8

alternative-statement (10.6) 6.4

AND 3.1,5.3.4

Arithmetic 8.1, 5.1

arithmetic-operator (3.1) 3.1, 5.3.2

ARRAY 3.1,6.3

array-declaration (6.3) 6, 10.1

ASSIGN 105

asgignment-statement (6.6, 9.4) 6.4

assign-statement (10.5) 10.5

BEGIN 3.1, 6.4, 7.1, 8.1, 8.3, 10.1

Biuary 3.1, 131

BIT 3.,95

blank 3,5

block-list (10.2) 10.2

Boolean 3.1, 5.1

Boolean-constant (3.3) 3.3, 5.3.4

Boolean-formula (5.3.4, 9.4) 5.3, 5.3.4,
6.8, 10.6

Boolean-item-deseription (5.1) 5.1

Boolean-variable (5.2, 9.7) 5.2, 5.3.4

bracket (3.1) 3.1

BYTE 3.1, 95

CHARGgteristic 3.1, 9.6

CLOSE 3.1, 10.7

closed-statement (10.7) 6.4

comment (4) 5

complex-statement (6.4, 6.5) 6.4, 6.5

compound-statement (6.4, 6.5) 6.4, 6.5,
6.8, 7.1, 10.6, 10,7, 11.1

conditional-statement (6.8) 6.4

constant (3.3) 3, 10.1, 12

declaration (6) 6.4, 11.1
declaration-list (11.1) 11.1, 14
declarator (3.1) 3.1

DEFINE 3.1, 10.3
define-declaration (10.3) 6
delimiter (3.1) 8

Dense 3.1, 8.1

deseription (5.1) 6.1, 6.2, 6.3, 8.3, 10.1
descriptor (3.1) 3.1
dimension-list (6.3) 6.3
DIRECT 3.1, 10.5

direct-code (10.5) 10.5
direct-code-statement (10.5) 6.4
Dya! 3.1, 5.1

dual-constant (3.3) 3.3, 5.1
dual-item-deseription (5.1) 5.1

END 3.1,6.4,7.1,8.1,83, 10.1, 10.6
ENTRY 3.1, 9.4

entry-formula (9.4) 9.4

entry-list (8.1) 8.1

entry-type (8.1) 8.1, 8.2, 8.3
entry-variable (9.4) 9.4

EQ 3.1,9.4

exchange-statement (6.7, 9.4) 6.4

736

INDEX OF SYMBOLS AND TERMS

The following is an index of the JoviaL symbols and metalinguistic terms appearing in the syntactic formulas of
this report. Seetion numbers in parentheses refer to sections that contain term-defining formulas; section numbers
not in parentheses refer to sections that contain symbol- or term-using formulas. (To distinguish between symbols
and terms, notice that “‘symbol’ is a term, whereas “TERM?” is a symbol.)

FILE 3.1,13.1

file-declaration (13.1) 6

file-operator (3.1) 3.1

fixed-constant (3.3) 3.3, 5.1

fixed-point-item-description (5.1) 5.1

Floating 3.1, 5.1

floating-constant (3.3) 3.3, 5.1

floating-point-item-description (5.1)
5.1

FOR 3.1,7.1,93

formal-input-parameter-list (11) 11,
111

formal-output-parameter-list (11) 11,
11.1

formal-parameter-list (11.1) 11.1

formula (5.3) 6.6, 11

for-clause (7.1, 9.3) 7.1

funection (5.3.1) 5.3.2, 5.3.3, 5.3.4

functional-modifier (3.1) 3.1

GOTO 3.1, 6.9
go-to-statement. (6.9) 6.4
GQ 31

GR 31

Holterith 3.1, 5.1, 13.1

identifier (3.2)

IF 3.1, 6.8

IFEITH,, 3.1, 10.6

if-clause (6.8) 6.8, 7.1

index (5.2) 5.2, 7.1, 9.4, 9.5, 12, 13.3
index-list (5.2) 5.2
index-switch-list (12} 12
initial-value-declaration
INPUT 3.1,13.3
input-record (13.3) 13.3, 13.4
input-statement (13.3) 6.4
integer-constant (3.3) 3.3, 5.1
ITEM 3.1, 6.1, 8.3, 10.1
item-declaration (6.1) 6, 8.1
item-switch-list (12) 12

(10.1) 6

JOVIAL 3.1, 10.5

letter (3)3,3.2,3.3,5,7,82

Like 3.1,8.2
like-table-declaration (8.2) 8
literal-constant (3.3) 3.3, 6.3.3, 10.1
literal-formula (5.3.3) 5.3, 5.3.4
literal-item-description (5.1) 5.1
literal-relation-list (5.3.4) 5.3.4
literal-variable (5.2, 9.5) 5.2, 5.3.3
logical-operator (3.1) 3.1
loop-counter (3.2)'7, 7.1, 7.2, 9.3, 9.7
loop-indices (7.1) 7.1
loop-statement (7.1) 6.4

LQ 31

LS 3.1

MANT s 3.1, 9.6
mark (3)3,5

Mediom 3.1, 8.1

MODE 3.1, 6.2, 10.1
mode-declaration (6.2) 6

name (3.2) 3, 3.2, 3.3, 5.2, 5.3.1, 53.4,
6.1, 6.3, 6.5, 6.9, 7.1, 8.1, 8.2, 8.3, 9.1,
9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 10.1, 10.2,

Communications of the ACM

10.3, 10.4, 10.6, 10.7, 11, 11.1, 11.2, 12,
13.1, 13.2, 13.3, 13.4, 14

NENT 3.1, 9.1

N, 3.1,8.1

NOT 3.1, 5.3.4

NQ 3.1,9.4

null (2) 3.2, 3.3, 5, 5.1, 5.2, 5.3.1, 5.3.4,
6.3, 6.4, 8.1, 8.2, 8.3, 9.5, 9.6, 9.7, 10.1,
10.2, 10.5, 10.6, 11, 11.1, 11.2, 12, 13.3,
13.4, 14

number (3.3) 3.3, 5.1, 6.3, 8.1, 8.2, 8.3,
10.5, 13.1

numeral (3) 3, 3.2, 3.3, 5, 8.2

numeric-constant (3.3) 3.3, 5.3.2, 10.1,
13.4

numeric-formula (5.3.2, 9.1, 9.2) 5.2,
5.3, 5.3.2, 5.34

numeric-item-description (5.1) 5.1

numerie-relation-list (5.3.4) 5.3.4

numeric-variable (5.2, 7, 9.1, 9.6, 13.2)
5.2, 5.3.2

NWDSEN 3.1, 9.2

n-dimensional-constant-list (10.1) 10.1

n~—1-dimensional-constant-list (see 10.1)
10.1

o (5)5,5.1,52,5.3.1,5.32,5.34,6.1,6.2,
6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.1, 7.2,
8.1, 8.2, 8.3, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6,
9.7, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6,
10.7, 10.8, 11, 11.1, 11.2, 12, 13.1, 13.2,
13.3, 13.4, 14

octal-constant (3.3) 3.3

octal-number (3.3) 3.3

OoDD 3.1,9.7

OPEN 3.1, 13.3, 134

OR 3.1, 5.3.4

ordinary-table-declaration (8.1) 8

ORIF 3.1, 10.6

OUTPUT 3.1, 13.4

output-record (13.4) 13.4

output-statement (13.4) 6.4

OVERLAY 3.1, 102

overlay-declaration (10.2) 6, 8.1

overlay-list (10.2) 10.2

packing-mode (8.1) 8.1, 8.2, 8.3
Parallel 3-1, 8.1

POSition 3.1, 13.2

Preset 3.1, 10.1

PROCedure 3.1, 11.1
procedure-declaration (11.1) 8
procedure-statement (11.2) 6.4
program (14)

relational-formula (5.3.4) 5.3.4
relational-operator (3.1) 3.1, 5.3.4
RETURN 3.1, 10.8
return-statement (10.8) 6.4
Rigiqa 3.1, 8.1, 13.1

Rounded 3.1, 5.1

separation (5) 5

separator (3.1} 3.1
sequential-operator (3.1) 3.1
Serial 3.1, 8.1

SHUT 3.1, 13.3, 13.4

sign (3) 3.3, 5

signed (3.3) 3.3, 5.1, 10.5

Signed 3.1, 5.1

sign-string (3.3) 3.3, 4, 10.3, 10.5

simple-statement (6.4, 6.5) 6.4, 6.5,
6.8, 7.1, 10.6, 10.7

specified-entry-structure-table-declara-
tion (8.3) 8

START 3.1, 14

statement (6.4) 6.4

statement-list (6.4) 6.4, 7.1, 14

Status 3.1, 5.1

status-constant (3.3) 3.3, 5.1, 5.3.3

status-formula (5.3.3) 5.3, 5.3.4

status-item-description (5.1) 5.1

status-list (5.1) 5.1, 13.1

status-variable (5.2) 5.2, 5.3.3, 5.3.4

STOP 3.1, 10.4

stop-statement (10.4) 6.4

STRING 3.1,8.3

string-item-declaration (8.3) 8.3

structured-entry-list (8.3) 8.3

structured-item-declaration (8.3) 8.3

subscript (5.2) 5.2, 9.5, 9.6, 9.7, 10.5, 12

SWITCH 3.1, 12

switch-call (12) 6.9, 12

switch-declaration (12) 6

symbol (3)

TABLE 3.1, 8.1, 8.2, 83
table-declaration (8) 6, 10.1
table-type (8.1) 8.1, 8.2, 8.3
TERM 3.1, 14

TEST 3.1,7.2
test-statement (7.2) 6.4
Transmission~code 3.1, 5.1

Unsigned 3.1, 5.1

Variable 3.1, 8.1, 13.1
variable (5.2) 6.6, 6.7, 11, 13.3

1-dimensional-constant-list (10.1) 8.1,
8.3, 10.1

2-dimensional-constant-list (see 10.1)
8.3

) 3.1, 3.3, 53.1, 532, 534, 9.1, 9.2,
9.3, 9.4, 9.5, 9.6, 9.7, 11.1, 11.2, 12, 13.2

- 3.1, 3.3, 5.3.2

+ 3.1,33,53.2

= 3.1, 6.6, 7.1, 9.4, 10.2, 10.5, 111,
11.2, 12

== 31,6.7,94

$ 31, 4, 6.1, 6.2, 6.3, 6.6, 6.7, 6.8, 6.9,
7.1, 7.2, 8.1, 8.2, 83, 9.3, 9.4, 10.1,
102, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8,
111, 11.2, 12, 13.1, 13.4, 14

$) 3.1,5.2,94,9.5,12,133

* 31

** 31

(3.1, 3.3, 53.1, 53.2, 534, 9.1, 9.2,
9.3, 9.4, 9.5, 9.6, 9.7, 11.1, 11.2, 12, 13.2

($ 3.1,52,94,95,12, 133

¢/ 31,532

, 3.1,33,5.2,71,9.5, 102, 11, 12

” 3.1,4,10.3

3.1

/) 31,532

. 3.1, 6.5, 3.3, 7.1, 10.6, 11, 14

. 3.1,51,13.3

VYolume 6 / Number 12 / December, 1963

