
S. GORN, Editor; R. W. BEMER, Asst. Editor, Glossary & Terminology
J. GREEN, Asst. Editor, Programming Languages
E. LOHSE, Asst. Editor, Information Interchange

A Specification of JOVIAL*

CHRISTOPHER J. SHAW
System Development Corporation, Santa Mronica, California

1. I n t r o d u c t i o n a n d C u r r e n t S t a t u s

This report gives a complete specification of the latest
"official" version I of JOVIAL, a general-purpose, proce-
dure-oriented, and largely computer-independent program-
ruing language developed by System Development Cor-
poration for large-scale military systems and as a corporate
standard.

Work on JOVIAL, which is derived from ALGOL 58 [1]
and from CLIP [2], began early in 1959. Since then, SDC
has built JOVIAL compilers for several machines: the IBS~
7090; the IBM AN/FSQ-31v (this compiler is also running
on the closely related AN/FSQ-32); the IBM AN/FSQ-7;
the Philco 2000; and the Control Data 1604 (this compiler
has been adapted for use with the 1604A). The first two
of these compilers accept an earlier and slightly different
version of JOVIAL than is reported here. (And while all of
the language reported here has been implemented in one
compiler or another, none of them have implemented it
entirely.)

In addition to the compilers mentioned above, a fast,
one-pass compiler accepting a restricted subset of JOVIAL
has been written and is running on the IBM 7090. I t is
being adapted for the AN/FSQ-32 as part of the time-
sharing system being developed for that computer, and it
is also being adapted for the Philco 2000. SDC is also
writing a full-scale JOVIAL compiler for the IBM A N /
FSQ-32 that should be in operation by the time this re-
port appears.

JCVlAL has found application outside as well as inside
SDC. Some thir ty computer installations have received
JOVIAL compilers, mainly through the users groups: SHARE,

* Received August, 1963. This report owes much to the valuable
help of M. H. Perstein and the other members of the Jovial Com-
piler Staff at System Development Corporation.

The design of the language described in this report was com-
pleted in June 1961; no changes have been made since. Recently,
however, it was decided again to consider language change pro-
posals, and it can be expected that several minor improvements
and extensions will have been adopted by the time this report is
published.

TUG and Co-oP. JOVIAL has been adopted by the Navy
Command Systems Support Activity as the interim stand-
ard programming language for Navy strategic command
systems.

2. N o t a t i o n

Iu this report, the metalanguage used to describe JOVIAL
syntax is the so-called Backus Normal Form, 2 with a
few additions.

The elements of the metalanguage either denote or
exhibit JOVIAL sign-strings. Except for the blank, JOVIAL
signs thus stand for themselves, while terms made up of
lower-case letters, possibly hyphenated, denote whole sets
of JOVIAL sign-strings. The (and } brackets are used, not
to enclose these terms, but to group strings of elements
into, in effect, single elements.

A concatenation of these elements signifies a concatena-
tion of JOVIAL signs. (Spaces have no meaning here and
only improve readability.) The] symbol signifies selection
between alternative strings of elements, (as limited by the
(and) brackets.) The ::= symbol signifies syntactic
equivalence.

A subscript appearing after any metalinguistic element
is merely a "semantic" cue, with no formal syntactic
effect.

The term null is introduced, with the following mean-
ing:
null ::=

(The null or empty string of signs.)
To simplify the semantic explanation, alternative def-

initions of certain metalanguage elements are given at
different places in the text. This has been noted, but the
index at the end is perhaps the most convenient guide.

3. A l p h a b e t a n d V o c a b u l a r y

JOVIAL'S symbols are formed from an alphabet of 48
signs consisting of 26 letters, 10 numerals, and a dozen
miscellaneous marks including the blank and the dollar

2 As used in 1963 [3].

Volume 6 / Number 12 / December, 1963 Communicat ions of the ACM 721

sign. (This a lphabet is the hardware a lphabet as well as
the reference alphabet.)
sign ::= letter [numeral [mark
letter : := AIB[CIDIEIF]G[H[I[JIKILIM[NIOIP[Q[R]SIT]U[V [

WlXlYIZ
numeral : := 0[1121314[5161718[9
mark ::= blank I(I)l+l--I*l/l-1,1'1=15

Strings of JOVIAL signs form symbols, which are classed
as delimiters, identifiers, and constants.
symbol ::= delimiter [identifier [constant

3.1 DELIMITSRS. Delimiters are the verbs, the adjectives,
and the punc tua t ion of JoviAn. T h e y have fixed meanings,
best described in later context.
delimiter ::= arithmetic-operator I relational-operator] logical-

operator I sequential-operator] file-operator] functional-modi-
tier] separator I bracket '~ declarator] descriptor

arithmetic-operator ::= "1-I--I*1/1"*
relational-operator :: = EQ [GR IGQ ILQ ILS]NQ
logical-operator ::= AND [OR INOT
sequential-operator :: = IF IGOTO]FOR ITEST ICLOSE]

RETURN ISTOP IIFEITttor 1ORIF
file-operator ::= OPEN l SHUT]INPUT]OUTPUT
functional-modifier :: = BIT [BYTE]MANTi~ [CHARacteristic [

ODD 1NENT INWDSEN [ALL [ENTRY IPOSitlo~
separator ::= .] , [.~ l= : [. . . 15
bracket :: = (D [(/[/) [($[$) l" [" I BEGIN [END IDIRECTIJOVIAL[

START [TERM
declarator :: = ITEM [MODE IARRAY [TABLE [STRING I

OVERLAY IDEFINE [SWITCH [PROCoauro IFILE
descriptor:: = Elo~tlng [Arltl ic [D~l I Sign~4]U=~igncd Ino,=ao,i [Hollerith]

T i s s l de I Stat,~ [Bool~,,. [Variable [n~g~(t [P~¢t ILiko [P~ll~l I

So~llD IMoaium [NolBi=o~y

3.2 IDENTIFIERS. Identifiers are either loop counters or
names. Loop counters serve to identify the intrinsic set
of signed, integer-valued variables used in controlling
loops. (Loop counters are discussed fur ther in Section 7
on Loops.) Names serve to identify the elements of a
JOVIAL program's information envi ronment : s ta tements ,
switches, procedures, items, array-i tems, tables, string-
items, and files. Except for context-defined s ta tement
names (and, in a sense, mode-defined i tem names), all
JowAn names mus t be declared--e i ther explicitly, in the
program, or implicitly, in the Compool s or the procedure
library.

A JOVIAL name is an a r b i t r a r y - - t h o u g h usually mne-
m o n i c - a l p h a n u m e r i c symbol, at least two characters long,
which m a y be punc tua ted for readabil i ty by the ' mark.
identifier : := loop-counter] name
loop-counter ::= letter
name ::= (letter] name) (null [") (letter [numeral)

Examples:
A
Z
STEP'01
B R A N C H
U238
FLIGHT'POSITION

Names mus t obviously be distinguishable f rom delimiters
and f rom each other. This is done by unique spel l ing--

A Compool, in effect, is a library of system environment decla-
rations and storage allocation parameters.

with the exception tha t names defined within a procedure
are defined only for t ha t procedure and do not conflict with
names defined outside it. Fur thermore , names defined with-
in a program are defined only for t ha t program, excluding
procedures t ha t define identically-spelled names. Names
defined in a Compool are defined for an entire p rogram sys-
tem, excluding programs or procedures t ha t define identi-
tally-spelled names. The names of da ta elements (items,
arrays, tables, strings, and files) mus t be defined before
they m a y be used.

3.3 CONSTAX'TS. JOVIAL programs manipula te four types
of da ta : numeric values, consisting of the class of rat ional
numbers and rat ional number pairs; literal values, con-
sisting of strings of JOVIAL signs; s ta tus values, consist-
ing of independent sets of arbi t rar i ly named states (such
as Good, Fair, Poor) ; and Boolean values, consisting of
the two values, True and False.

constant ::= numeric-constant I literal-constant I status-con-
stant i Boolean-constant

numeric-constant ::= integer-constant I floating-constant I fixed-
constant I octal-constant I dual-constant

A JOVIAL constant , therefore, denotes a par t icular value
as represented by a part icular machine- language symbol.
Numbers , integer constants , and floating- and fixed-point
constants denote numeric values in the conventional , dec-
imal sense, while octal constants have the obvious mean-
ing of octal integers and dual constants denote pairs of
numeric values. Literal constants denote Jovial sign-strings,
represented in one of two possible 6-bit-per-sign encoding
schemes, s ta tus constants are mnemonic names denot ing
qualities or categories ra ther t h a n numeric values, and
Boolean constants denote either True (by 1) or False
(by 0).

number ::= numeral (null [number)
signed ::= null [+] ~
integer-constant ::= number [number E~ono~t-b~o-~0 number
floating-constant ::= (number. [number . number I . number}

(null] E~, t-b~-10 signed number)
fixed-constant ::= floating-constant A signed number of-fr,otio,,-bit~
octal-number :: = (0 [1121314].51617}(null I octal-number}
octal-constant ::= Octal (octal-number)
dual-constant ::= Dual ((signed integer-constant, signed integer-

constant [signed fixed-constant , signed fixed-constant I octal-
constant , octal-constant})

sign-string ::= sign (null [sign-string}
literal-constant ::= numberof_~ig~ Houe~itt,-~oa~ (s ign-s t r ing) [

numberof.~ign~ T i~i a, (sign-string) I octal-constant
status-constant ::= V~lu~ ((letter I name))
Boolean-constant ::= L] 0f~l~

Examples:
018
123E4
.5
5.6789E---4A36
0(77760)
D (- - 3 2 , + 1 6)
27H(THIS IS A LITERAL CONSTANT,)
l lT(SO 1S THIS.)
V(EXCELLENT)
1

722 Communicat ions of the ACM Volume 6 / Number 12 / December, 1963

In the integer-, floating-, and fixed-constants, the num-
ber following E is a decimal scaling factor expressed as an
integral power of 10. In the fixed-constant, the number
following A is a binary scaling factor, indicating precision,
expressed as the number of fractional bits included in the
machine-language symbol representing the value. (A nega-
tive precision-number implies truncation of least significant
integral bits.)

Of the two coding schemes available for representing
literal values, the more generally useful is Hollerith, the
machine-dependent code by which literal values are in-
put and output. Transmission-code, on the other hand,
with its defined representation, does allow machine-in-
dependent symbol manipulation procedures to be written.
The collating sequence for Transmission-code (wherein #
denotes an unused numeric code) is the following: blank
A B C D E F G H I J K L M N O P Q R S T U
V W X Y Z) - - . 4 - # = # # $, (# # # # , # 0 1 2 3 4 5 6
7 8 9 ' # / . # #. Any Jov i ,L sign may appear in a literal
constant's sign-string, so the number of signs within the
parentheses must equal the number preceding the H or
T. Notice that an octal constant may denote a literal
value (or, rather, its machine-language representation).
This is useful, for example, in order to specify a code not
associated with a JOVIAL sign.

The value of a status constant is defined only in context
with a corresponding status variable, so its name may
duplicate that of other status constants associated with
different status variables. (Indeed, it may even duplicate
a name used for another purpose.)

4. C o m m e n t s

A comment allows a remark or clarifying text to be
included among the symbols of a JOVIAL program. Com-
ments are ignored by the compiler and so have no opera-
tional effect whatever on the program.
c o n l n l e n t : : ~ " s i g n - s t r i n g e x e l u d i n g - ~ h e - ~ . a n d _ $ _ s y m b o l s tt

Example:
" T H I S IS A C O M M E N T . "

Note that the omission of either " bracket is a major
error, for subsequent commentary is interpreted by the
compiler as program, and vice versa. To minimize the
effect of such an error, the sentence-terminating $ sep-
arator (though not the ($ and $) brackets) is excluded
from commentary. Also excluded, of course, is the "
bracket itself.

5. Clauses

Strings of JOVIAL symbols (delimiters, identifiers, and
constants) form clauses: item descriptions, which describe
values; variables, which designate values; and formulas,
which specify values. In general, symbols may be separated
by comments or by an arbitrary number of blanks.
s e p a r a t i o n : := (b lank I commen t) (null [s epa ra t ion)

However, no separation is needed when one or both
of the signs so joined is a mark. To indicate symbol separa-
tion, then, the context-dependent term o must be intro-

duced, with the following meaning:

(numera l] l e t t e r) o (numera l I l e t t e r) : := (numera l I l e t t e r) separa -
t ion (numerM] l e t t e r)

s ign o m a r k : := s ign (null] s epa ra t ion) m a r k
m a r k o s ign : := m a r k (null [s epa ra t ion) s ign

5.1 ITEM DESCRIPTIONS. In JOVIAL, the basic units of
data are called items. All the necessary characteristics of
an item's value, such as its type, and the format and coding
of the machine-language symbol representing it, need be
supplied only once-- in an item description.

desc r ip t ion : := n u m e r i c - i t e m - d e s c r i p t i o n I l i t e ra l - i t em-desc r ip -
t ion] s t a t u s - i t e m - d e s c r i p t i o n I boo l ean - i t em-desc r ip t i on

n u m e r i c - i t e m - d e s c r i p t i o n : := f l oa t i ng -po in t - i t em-desc r ip t i on]
f i xed -po in t - i t em-desc r ip t i on [duM- i t em-desc r i p t i on

f l o a t i n g - p o i n t - i t e m - d e s c r i p t i o n : : = Flo~m.~ o (nullt t~d[l{ k.d) °
(null I f l oa t ing -cons tan t f loa t ing-cons tan t)

f i xed -po in t - i t em-desc r ip t i on : := ArlqAln.etic ° numberof-blt~ o (Signed [
U n s i g n e d) o (nulli~t¢~l [s igned n u m b e r of-f~.~otlo.~i-bit~) °
(nullt ted I Ro.~d~d) o (null] i n t e g e r - c o n s t a n t o . . . o in teger -
c o n s t a n t [f ixed-cons tan t f ixed-cons tan t)

duM- i t em-desc r ip t i on : := D,,~l o nul:nberof-lAts-l,er-half o (Sig,,~,! [
U,,slg,,ed) ° (nulli,acg~! I s igned nmnberof-f~,,¢~io.~|-i,its-l,~,r-h,,lf) °
(nullt t~d [R lod) ° (null] d u a l - c o n s t a n t duM-con-
stant)

l i t e r a l - i t em-desc r ip t ion : : = (| t o l h . r i t h - c o d c]T~ i~i l~> o n u m -
berof-signs

s t a tu s - l i s t : := s t a t u s - c o n s t a n t o (null I s ta tus- l i s t}
s t a t u s - i t e m - d e s c r i p t i o n :: = St~t.~ o (null [lmmberof.~,it~) o s t a tu s - l i s t
boo l ean - i t em-desc r i p t i on : := Bool

Examples:
F R .5E- -7 5 E + 3
A 36 S 15
D 16 U R D(0,0) . . . D(25E3, 25E3)
H 120
S V(B AD) V (P O O R) V(FA1R) V (G O O I)) V (F I N E)
B

In the three nmneric item descriptions, the R for
Rounded descriptor declares that any value assigned to
the item be rounded rather than truncated, as would be
the ease were the R omitted. The pair of numeric constants,
separated by the ... separator, declare the estimated
minimum and maximum absolute values of the item, in
that order. (This optional, estimated range is useful mainly
for purposes of program documentation, though it may
be used by a compiler to optimize the machine-language
program's manipulation of the item.)

In both fixed-point and dual item descriptions, number
of bits includes both integral and fractional bits, and a
sign-bit, if any. (The presence of a sign-bit is declared by
the S for Signed descriptor; the absence, by the U for
Unsigned descriptor.) If number of fractional bits is omitted,
an exact integer (or dual integer) is declared; and if num-
ber of fractional bits is negative, the low-order integer
bits are declared not significant and therefore need not be
represented.

In the status item description, the list of status constants
declares the possible values of the item. These values are
encoded, in order, by the series of numbers 0, 1, 2, 3, etc.
When number of bits is omitted, the size of the machine-
language symbol needed to represent the item's value is

V o l u m e 6 / N u m b e r 12 / D e c e m b e r , 1963 C o m m u n i c a t i o n s o f t h e A C M 723

derived from the number of status constants. (When a
number of bits k is given, the number of status constants
may not exceed 2L)

5.2 Vamimms. A variable designates a value which may
be altered during the course of program execution. Since
items are the basic units of data in JOVIAL, they are the
chief variables. If an item name designates more than one
value, as in an array, table, or string, then an index list
(of numeric formulas) must be appended (as a subscript,
enclosed in the ($ and $) brackets) to distinguish a par-
ticular value.

var iab le : := nm ne r i e -va r i ab l e I l i t e ra l -va r i ab le] s t a t u s - v a r i a b l e]
Boo lean-var iab le

index : := num er i c - f o rmu la
index- l i s t : := index o (null [, o index- l is t)
subsc r ip t : := ($ o index- l i s t o $)
numer i c -va r i ab l e : := nameof i c - i t e m o (null] subsc r ip t)
l i t e r a l w a r i a b l e : := nameof-lito~l-itom o (null I subscr ipt}
s ta tus-wLriable : := nameof-status-item o (mall I subsc r ip t)
boo lean-va r i ab le : := nameof-Boo, item o (null] subscr ip t}

JOVIAL has other variables besides items. These are
discussed in the sections on loops (7), functional modifiers
(19), and input-output (13).

5.3]~ORMULAS. A formula specifies a value and is, in
effect, a computing rule for obtaining that value. A formula
may contain variables and so the value it specifies, in
general, is dynamically dependent on these variables, as
will be described.

fo rmula : := num e r i c - fo rmu la] l i t e rM-formula [s t a t u s - f o r m u l a [
boo lean - fo rmula

5.3.1 Functions. A function specifies the value com-
puted by a procedure utilizing the function's actual input
parameters, if any. (These are values, as specified by
formula, and arrays or tables, as denoted by name.) Func-
tions are numeric, literal, status, or Boolean--according
to the type of data value they specify. (The rules govern-
ing actual parameters and function types are covered iu
the section on procedures.)

func t ion : := nameo~_)) o (o (null [a c t u a l - i n p u t - p a r a m e t e r -
list) o)
Examples:

A R C S I N (GAMMA*2.72 , l . 0E--4)
R A N I) O M ()
S Y M M E T R I C (M A T R I X ' A)

Because a function value is computed by a procedure,
specifying a function value may have other "side-effects"
on program execution. However, the value specified by a
formula is undefined when that formula contains both a
variable, and a function that affects its value.

5.3.2 Num.eric Formulas. A numeric formula specifies a
numeric value computed from the values expressed by its
individual operands--numeric constants, variables, and
functions. The arithmetic operators "4-, --, *, / , and **
have the conventional algebraic meanings of addition,
subtraction or negation, multiplication, division, and ex-
ponentiation. As in algebra, division by zero is undefined.
Fractional or mixed exponents are possible, but since

JOVIAL deals only with rational numbers, any exponentia-
tion that would specify a complex root, such as (-2)**.5,
is also undefined. The parentheses (and) perform their
usual grouping function, and the absolute value brackets
(/ and /) specify the magnitude of the value of the nu-
lneric formula they enclose. With these brackets, formulas
of any complexity may be constructed.

tu rmer ic - formula : := n u m e r i c - c o n s t a n t [n u m e r i c - v a r i a b l e [
functionof ie-tt.vl)e [(+ t - -) o numer i c - fo rmu l a I (o numer ic -
formul'~ o) [(/ o n u m e r i c - f o r m u l a o /) [numer i c - fo rmu la o
a r i t h m e t i c - o p e r a t o r o numer i c - fo rmu l a
Examples:

AA(0)**2/ (AA ($ 1 $) - - A A ($ 2 $) / (X X + I / X X))
(--273. *ALPHA(0) + (/ B E T A ($ T 2 $) /) * * - -

L O G (B E T A ($T25))) / l . 889E- -6

The sequence of arithmetic operations in a numeric
formula is determined primarily by the way the formula
is bracketed and secondarily by the conventional operator
precedence scheme: first, negations are performed; second,
exponentiations; third, multiplications and divisions;
fourth, additions and subtractions; finally, within these
categories, operations are performed from left to right in
order of listing.

In JOWAL, numeric values have three modes of repre-
sentation: floating-point, fixed-point, and dual fixed-point.
Any arithmetic operation may be performed in any one
of these modes, upon operands of like mode. (In the dual
mode, operations are done in parallel, with the left com-
ponent of one operand combined with the left component
of the other to yield the left component of the l~sult, and
similarly for right components.) However, a numeric
formula may combine operands having different modes of
representation, so the following automatic conversions
between modes are implied: fixed to floating, floating to
fixed, fixed to dual?

The precision of the result of a fixed-point (or dual
fixed-point) computation is compiler-dependent mid can-
not be exactly defined, but some useful limits can be
established. Where the maximmn possible significance of a
result exceeds the maximum allowed numeric-operand
size, the result is truncated to this limit in the following
manner:first, the least signifcant fraction bits of the result
are truncated; and second, if necessary, the most significant
integer bits. (In determining the maximum possible sig-
nificance of a fixed-point result, exact integers are re-
garded as arbitrarily precise.)

5.3.3 Literal and Status Formulas. Both literal and
status formulas specify a value as expressed by a single
operand--a constant, a variable, or a function--of the
appropriate type.

l i t e rM-formula : := l i t e rM-cons t an t i l i t e rM-var iab le I fune-

tiOnof-literal -tYlm
s t a t u s - f o r m u l a : := s t a tu s c o n s t a n t] s t a t u s - v a r i a b l e I fune-

tiOnof-status-type

4 The s ing le -vahmd f ixed-point ope rand is " t w i n n e d " or dupl i -
ca ted .

724 C o m m u n i i c a t i o ; l s o f t h e A C M V o l u m e 6 / N u m l) e r 12 / D e c e m b e r . 1963

Examples:
6 T (A B A C U S)
O (060706103230)
S I G N A L
V (C L O U D Y)
W E A T H E R ($ A I R B A S E $)
T Y P E (S I G N A L)

5.3.4 Boolean Formulas. A Boolean formula specifies a
Boolean value, either True or False, computed from the
values expressed by its individual operands--Boolean con-
stants, variables, and flmctions; and relational fornnflas.

numer ic - r e l a t ion - l i s t : := r e l a t i ona l -ope ra to r o numer i c - fo rmula
o (null t numer ic - re la t ion- l i s t)

l i t e ra l - re la t ion- l i s t : := r e l a t ionM-opera to r o l i t e rM-formula
o (null] l i t e ra l - re la t ion- l i s t)

r e l a t ionM-formula : := numer i c - fo rmula o numer i c - r e l a t ion - l i s t I
l i t e r a l - fo rmula o l i t e ra l - re la t ion- l i s t] (s t a tus -va r iab le]
nameof.fl,~) o r e l a t ionM-opera to r o s t a t u s - fo rmu la

boo lean- fo rmula : := boo l ean -cons t an t [boo lean-var iab le [func-
tiOnof-bool typo] r e l a t iona l - fo rmula I (° boo lean- fo rmula o) [
N O T o boo lean- fo rmula I boo lean- fo rmula o (AND] OR) o boolean-
fo rmula
Examples:

0
I N D I C A T O R
L E G A L (S I G N A L)
- -13 LS A L P H A LQ ÷100 LS BETA($T2$) LQ +198
1T(A) LQ S I G N A L LQ 1T(Z)
W E A T H E R ($ A I R B A S E $) EQ V (F A I R)
I N D I C A T O R AND N O T (W E A T H E R ($AIRBASE$) EQ V (F A I R)

O R L E G A L (S I G N A L))

A relational operator compares the pair of values spec-
ified by the formulas on either side to determine whether
the indicated relation holds between them. A relational
formula thus specifies True only when all its relations hold.
The relational operators indicate primarily nmneric rela-
tions: EQ, is EQual to ; NQ, is uNeQual to; GR, is GReater
than; LQ, is Less than or equal to; LS, is LesS than;
and GQ, is Greater than or equal to. They may be used,
however, to compare both literal and status values on the
basis of their numeric encoding. Shorter literal values are
prefixed by blanks before comparison. (The use of a file
name in a relational formula is treated in Section 13.2,
Testing and Positioning Files.)

Logical operations can be performed on Boolean values
in much the same way that arithmetic operations are per-
formed on numeric values. The logical operator NOT
reverses the value specified by the subsequent Boolean
formula, while AND yields True only if the Boolean
formulas on either side both specify True, and OR yields
False only if the Boolean formulas on either side both
specify False. Unless parentheses indicate otherwise, the
precedence of the logical operations is: NOT's first, AND's
second, and OR's last; from left to right.

6. Bas i c D e c l a r a t i o n s and S t a t e m e n t s

Clauses are combined with certain delimiters to form
declarations and statements, which are the sentences of
.IOVIAL. Statements assert actions that the program is to
perform (normally in the sequence in which they are

listed) and declarations describe the information environ-
ment in which the actions are to occur.
dec la ra t ion : := i t em-dec l a r a t i on [mode -dec l a r a t i on] a r ray-

dec la ra t ion [t : f l) le-declarat ion] in i t i a l -va lue-dechm~t ion I
ove r l ay -dec l a ra t ion] de f ine-dec la ra t ion i p rocedure -dec l a r a -
t ion] swi t ch -dec l a ra t ion I f i le -declara t ion

6.1 ITEM DECLARATIONS. In data processing, the natural
unit of information is the value. In JOVIAL, values other
than those denoted by constants, or used only as inter-
mediate results, or for controlling loops, must be formally
declared as items--simple items, array items, table items,
or string i tems--before they may be referenced. When not
part of a table declaration, an item declaration defines a
simple item, with a single value.
i t em-dec l a r a t i on : := I T E M o nameof.lt~m o desc r ip t ion o $

Examples:
I T E M P66 F $
I T E M T A L L Y A 15 U R 0 . . . 2E4 $
I T E M F L I G H T ' P O S I T I O N |) 16 S 5 $
I T E M [D E N T H 12 $
I T E M I I E A D 1 N G S 6 V(N) V(NE) V(E) V(SE) V(S) V(SW)

v(w) V(NW) $
I T E M S P A R E B $

6.2 MOI)E DECLARATIONS. A mode declaration starts a
new normal mode of item description for the implicit
declaration of all subsequently referenced and otherwise
undefined simple items. 5
mode-dec l a r a t i on : := M O D E o desc r ip t ion o $

Examples:
M O D E F R $
M O D E A I 5 U 3 5
M O D E B $

After a mode declaration, the initial occurrence of any
name, in any context where a simple item name is ex-
pected, serves at that point to declare an item with that
name, described according to the mode. A mode declaration
remains effective until superseded by another mode decla-
ration.

0.3ARRAY DECLARATIONS. An array declaration de-
scribes the structure of a collection of similar item values,
and also provides a means of identifying this collection
with a single item name. Rectangular arrays of any number
of dimensions may thus be declared.
dimens ion- l i s t : := numberof-i~m~-per-di ion o (null] d imens ion-

list,)
a r r ay -dec l a r a t i on : := A R R A Y o nameof.~tom o d imens ion- l i s t o

desc r ip t ion o $
Examples:

A R R A Y A L P H A 24 3 5 F R $
A R R A Y C A R I) ' I M A G E 80 H 1 $
A R I I A Y T I C ' T A C ' T O E 3 3 S V (E M P T Y) V (N O U G I F F)

V (C R O S S) $
A R R A Y C H A R A C T E R ' M A T R I X 7 5 B $

In designating an individual value from an n-dimen-
sional array, the array item name must be subscripted by
an n-component index list of numeric formulas; and where
the size of a dimension is lc items, the integral value

5 The initial, normal mode of i tem desc r ip t ion is coml)iler-
d e p e n d e n t .

V o l u m e 6 / N u m b e r 12 / D e c e m b e r , 1963 C o m m u n i c a t i o n s o f t i re ACM '725

(truncated, if necessalT) of the corresponding component
of the index list can only range from 0 thru k - 1 .

6.4 SIMPLE, COMPLEX, AND COMPOUND STATEMENTS. I t

is convenient to recognize three types of statements in
JOVIAL: simple statements, which express "primitive" data
processing actions; complex statements, which incorporate
simple or compound statements within them; and com-
pound statements, which group together whole strings of
statements--simple, complex, or compound.

s t a t e m e n t :: = s i m p l e - s t a t e m e n t [c o m p l e x - s t a t e m e n t [c o m p o u n d -
s t a t e m e n t

s t a t e m e n t - l i s t : := (s t a t e m e n t I declarat ion} o (null] s t a t e m e n t -
list)

s i m p l e - s t a t e m e n t : := a s s i g n m e n t - s t a t e m e n t] e x c h a n g e - s t a t e -
m e n t] g o - t o - s t a t e m e n t [t e s t - s t a t e m e n t] s t o p - s t a t e m e n t
r e t u r n - s t a t e m e n t] p r o c e d u r e - s t a t e m e n t] i n p u t - s t a t e m e n t
o u t p u t - s t a t e m e n t

c o m p l e x - s t a t e m e n t : := c o n d i t i o n a l - s t a t e m e n t] l o o p - s t a t e m e n t
d i r e c t - c o d e - s t a t e m e n t] a l t e r n a t i v e - s t a t e m e n t [closed s t a t e -
m e n t

c o m p o u n d - s t a t e m e n t : := B E G I N o s t a t e m e n t - l i s t o E N D

Notice that a compound statement may contain decla-
rations. (However, the scope of these declarations is gener-
ally not limited by the B E G I N and END brackets that
serve as statement parentheses.) To function as a state-
ment, tlhough, a compound statement must contain at
least one statement that is not a closed statement. (The
various simple and complex statements are treated in
subsequent sections.)

6.5 NAMED STATEMENTS. A statement must often be
named to permit it to be executed out of its normal,
listed sequence. Any JOVIAL statement--simple, complex,
compound, or already named- -may be named. A name is
needed, however, only when the statement is to be executed
out of sequence.
s i m p l e - s t a t e m e n t : := nameo.~t~um~nt o . o s i m p l e - s t a t e m e n t
conq) l ex - s t a t emen t : := naIneof.statement o . o c o m p l e x - s t a t e m e n t
c o m p o u n d - s t a t e m e n t : := nanneof-statement o . o c o m p o u n d - s t a t e m e n t

6.6 ASSIGNMENT STATEMENTS. An assignment statement
assigns the value specified by a formula to be the value
thereafter designated by a variable. The formula must,
therefore, specify a value of the type--numeric , literal,
status, or Boolean--designated by the variable.

a s s i g n m e n t - s t a t e m e n t : := va r iab le o = o fo rmula o $
Examples:

A L P H A = A L P H A + 27 $
S I G N A L _-- I T (M) $
W E A T H E R ($ A I R B A S E $) = V (C L O U D Y) $
I N D I C A T O R = --1.3 LS A L l ' H A LQ +100 LS B E T A LQ +198

O R L E G A L (S I G N A L) $

During assignment, where necessary, numeric values are
automatically converted to the representation, and are
rounded or truncated to the precision, of the variable to
which they are being assigned. However, the following are
undefined: assigning a negative value to an unsigned vari-
able; assigning a dual value to a fixed- or floating-point
variable; assigning a value to a variable with fewer sig-
nificant bits than the value.

Literal values are right-justified during assigmnent and,
where necessary, they are prefixed by blanks. However,
assigning a literal value to a variable with fewer signs than
the value is undefined.

Status value assignments operate as if on unsigned
integers, but assigning a status value to a variable with a
different encoding is undefined.

6.7 EXCHANGE STATEMENTS. An exchange statement ex-
changes the values designated by a pair of variables. The
effect of an exchange statement on either of the variables
involved :is as if each had been assigned the value desig-
nated by the other. Consequently, the rules of assignment
pertain, and both variables must be the same type: nu-
meric, literal, status, or Boolean.
e x c h a n g e - s t a t e m e n t : := va r iab le o = = o var iab le o $

Examples:
S I G N A L = = C A R D ' l M A G E ($ 2 7 5 5) $
W E A T H E R ($ A I R B A S E $) = = W E A T H E R ($ A I R B A S E + I $) $

0.8 CONDITIONAL STATEMENTS. A c o n d i t i o n a l s t a t e m e n t

is a complex statement whose two major constituents are
an if-clause containing a Boolean formula and a simple or
compound statement. The executiou of this s tatement is
conditional. If the Boolean formula specifies True, the
statement is executed. If it specifies False, the statement
is skipped, and operation continues with the next listed
statement.
i f -c lause : := I F o boo lean - fo rmula o $
c o n d i t i o n a l - s t a t e m e n t : := i f-clause o (s i m p l e - s t a t e m e n t I coin-

pound - s t a t emen t >

Example, contained in a (compound) JOVIAL statement
computing gross pay for an hourly employee:
B E G I N C O M P U T E ' G R O S S ' P A Y .
G R O S S ' P A Y ($ E M P L O Y E E $) = H O U R S ' W O R K E D ($ E M P L O Y -

EE$) * H O U R L Y ' P A Y ($ E M P L O Y E E $) $
I F H O U R S ' W O R K E D ($ E M P L O Y E E $) G R 40 $ G R O S S ' P A Y

($EMPLOYEE$) = G R O S S ' P A Y ($ E M P L O Y E E $) + (H O U R S "
W O R K E D ($ E M P L O Y E E $) ~ 40) • H O U R L Y ' P A Y ($ E M -
P L O Y E E $)] 2 $

E N D " C O M P U T E ' G R O S S ' P A Y "

6.9 Go-To STATEMENTS. A go-to statement breaks the
normal, listed sequence of s tatement executions by trans-
ferring control to the statement bearing the given name,
or specified by the switch call. (Switches and switch calls
are treated in Section 12.)

g o - t o - s t a t e m e n t : := G O T O o (nameof ~-~t~t~mo,~t I switch-cal l} o $
Examples:

G O T O C O M P U T E ' G R O S S ' P A Y $
G O T O S T E P ($35) $

7. Loops

Counting and count-controlled loops are among the
most common operations in programming. For this reason,
JOVIAL includes an intrinsic set of loop counters--signed,
integer-valued variables, each designated by a single letter.
numer i c -va r i ab l e : := loop-coun te r

A loop counter is activated and assigned an initial value
only by the execution of a for-clause in a loop statement.

726 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 6 / N u m b e r 12 / D e c e m b e r , 1963

7.1 Loop STATEMENTS. A loop statemellt is a complex
statement consisting of a list of for-clauses which establish
the loop counters, and a simple or compound statement,
which forms the repeatedly-executed body of the loop.

loop-indices :: = indexi,:ti~l-~lu~ [i n d e x i ~ i t i ~ l _ w l ~ e o , o indexi t]

indexl,iti~l-~luo o , o indexi t o , o indexHmit
for-clause ::= FOR o loop-counter o _-- o loop-indices o $
loop-statement ::= for-clause o (simple-statement]compound-

statement] BEGIN o statement-list o if-clause o END] loop-
statement}

Examples. The first example sets the first 500 N U M B E R s
to zero; the second computes a~ = 2~+~-1; the third
transposes the 25 by 25 matrix, NODE.

FOR A ---- 0,1,499 $ NUMBER(A) _-- 0. $
FO R I ---- 0,1,99 $ FOR S ---- 1,S-i-1 $ ALPHA($[$) = S $
B E G I N T R A N S P O S E . FOR I _-- 0,1,23 $

B E G I N FOR J _-- I-!-1,1,24 $
N O D E ($ I , J $) _--_-- N O D E ($ J , I $) $

END END

A loop statement activates one or more loop counters,
assigns them each an initial value, and causes its con-
stituent simple or compound statement to be executed one
or more times. If the for-clauses in the loop statement all
contain only initial-value indexes, this statement is exe-
cuted just once. However, if any of the for-clauses contain
an increment index, the statement is repeatedly executed,
and after each repetition, the values of the appropriate
loop counters are modified by the addition of the current
values of the corresponding increment indices. (This occurs
in reverse of the order in which the loop counters are
activated.) Finally, one of the for-clauses may contain a
limit index as well. (Only one such for-clause is allowed
per loop statement, ~ and it must precede any other for-
clauses containing increment indices.) If so, then the just-
incremented value of the corresponding loop counter is
tested, and the loop is terminated when that value exceeds
the current value of the limit index--in the positive di-
rection if the increment was positive or zero, and in the
negative direction if the increment was negative.

The loop statement containing au if-clause just before
the final END bracket conditionally performs the incre-
menting and limit testing routine. If the Boolean formula
of the if-clause specifies the value True, the routine is per-
formed. Otherwise, it is skipped and the loop is terminated.

The range of activity of a loop counter includes the for-
clause whose execution activates it, all subsequent for-
clauses, and the statement that forms the loop's repeatedly-
executed body. The use of au active loop counter as a
numeric variable is not restricted.

In general, only an inactive loop counter may be acti-
vated by a for-clause. An active loop counter may be re-
activated, though, by the re-execution of its corresponding
for-clause as the result of a transfer of control from within

the loop. Individual for-clauses in a loop statement can be

This means that a loop statement can produce just a single
loop. Loops within loops must be constructed by embedding the
inner loop in a compound statement iterated by the outer loop.

given statement names for this purpose. Ordinarily, how-
ever, any transfer of control into a loop statement from
outside will produce undefined results, due to inactive (and
therefore undefined) loop counters. 7

7.2 TEST STATEMENTS. The test statement, which is only
defined within a loop statement, expresses a transfer of
control to the implicit (and thus unnamed) loop-counter
modification routine at the loop's end.

test-statement ::= TEST o $ I TEST o loop-counter o $
Examples:

TEST $
TEST Y $

A test statement with no loop counter indicated transfers
control to the first loop counter modification of the inner-
most applicable loop statement, and thus effects the modifi-
cation of all loop counters activated by that loop state-
ment. On the other hand, if an active loop counter is
indicated, control goes to the routine modifying that par-
ticular loop counter, so the modification of subsequently-
activated loop counters is omitted. In either case, if the
loop statement includes a limit formula, the loop-termi-
nation test is made.

8. Tables

A table is a matrix of item values. The rows of a table
are called entries, and an entry consists of the values of a
related set of different items. Typically, entry K
(I T E M ' I (K), ITEM'2(K) , ..., ITEM'N(K)) would
consist of values measuring the N pertinent attributes of
"object" K. Such an entry would be associated with other,
similar entries in a table, or list of entries.

All entries of a table usually have the same composition
and structure in the sense that each consists of a similarly
named and ordered set of index-related items, declared as
part of the table declaration. Variable entry structures can
be achieved, however, by using the technique of overlaying
items and by the inclusion of string items in the entry.

table-declaration ::= ordinary-table-declaration]like-table-dec-
laration] specified-entry-structure-table-declaration

8.1 ORDINARY TABLE DECLARATIONS. A table is declared
by a table declaration that includes an entry list of item
declarations, enclosed in B E G I N and END brackets. These
declare the items comprising an entry. Any of these items
may be assigned initial values by including a list of con-
stants after the item declaration, and they may be allo-
cated storage common to other items in the entry by in-
cluding overlay declarations. (These two topics will be
covered in the sections on initial value declarations and
overlay declarations.)

An individual value of a table item is designated by
item name and entry index, and where a table has lc

7 Transfer of control into a loop statement will bypass the exe-
cution of at least one for-iclause, so corresponding loop counters
will be inactive and timir values undefined over the rest of the
loop statement.

Volume 6 / N u m b c r 12 / Dcccmber, 1963 Communications of the ACM '727

entries the numeric formula specifying en t ry index m a y
only range in value from 0 th rough k - -1 .
table-type :: : Varlable-length] Rigid-length
entry-type : : = SeriM-entry-strueture I ParMlel-entry-struoturo
packing-mode ::= No-it~m-p~¢ki.g I Medium-item-packing [

Denso-item-paoking
entry-list ::= item-declaration o (null] BEGIN o 1-dimensional-

constant-list o ENID) I entry-list o (entry-list] overlay-declara-
tion)

ordinary-table-declaration ::= TABLE o (null I nameof-t~bl~) o
table-type o numberof.~.t~i~ o (null I entry-type) o (null] packing-
mode) o $ o B E G I N o entry-list o END
Example:

TABLE AIRBASE'WEATHER R 85 S D $
BEGIN

ITEM AIRBASE'CODE H 3 "LETTERS" $
ITEM R E P O R T ' H O U R A 5 U 0...23 "HOURS" $
ITEM REPORT'MINUTE A 6 U 0.. .59 "MINUTES" $
ITEM W E A T H E R ' C H A N G E B "TRUE IF CHANGED

FROM LAST REPORT" $
ITEM C U R R E N T ' S U M M A R Y SV(OPEN) V(INSTRUMENT)

V(CLOSED) $
ITEM F O R E C A S T ' S U M M A R Y S V(OPEN) V(INSTRUMENT)

V(CLOSED) $
1TEM CEILING A 9 U 0...511 "HUNDRED

FEET. MAXIMUM OF 511
MEANS UNLIMITED" $

ITEM VISIBILITY A 5 U 1 0.A1...15.5A1 "NAUTI-
CAL MILES. MAX I M U M
OF I5.5 MEANS UNLIM-
ITED" $

ITEM VISIBILITY'BLOCK S V(NONE) V(FOG) V(DUST)
V(SMOKE) V(HAZE) $

ITEM BLOCK'AMOUNT S V(NONE) V(LIGHT)
V(MODERATE) V(HEAVY)
$

ITEM PRECIPITATION S V(NONE) V(RAIN)
V(SNOW) V(SLEET)
V(HAIL) $

ITEM PRECIP'AMOUNT S V(NONE) V(LIGHT)
V(MODERATE) V(HEAVY)
$

ITEM R U N W A Y ' C O N D I T I O N S V(OK) V(WET) V (I C Y)
V(SNOW) V(BLOCKED) $

END

A table name may be omitted from the declaration
when only individual table items are referred to in the pro-
gram, and never the entire table.

The V for Variable or R for Rigid table-length descriptor
indicates table type, and determines whether the number
of entries can vary during program execution.

Number of entries indicates the table's maximum length
for a variable-length table, and its fixed length for a rigid-
length table.

The S for Serial or P for Parallel entry-structure de-
scriptor indicates entry type and determines one of two
possible storage configurations for the table. (If entry
type is omitted, the compiler-dependent, "normal" entry
type is assumed.) A k-word, serial-type entry is allocated
a block of k serial, or consecutive, storage registers. A
k-word, parallel-type entry, on the other hand, is allocated
parallel, or similarly-located, storage registers in k separate
blocks.

The N for No, M for Medium, or D for Dense item-

packing descriptor indicates a mode of storage al location
for the i tems in an entry . (If packing mode is omit ted , the
compiler-dependent , " n o r m a l " packing mode is assumed.)
No packing means t ha t i tems are allocated storage in full
register uni ts , so t ha t each i tem in the en t ry will occupy
one or more consecutive registers; m e d i u m packing means
t ha t storage is al located in sub-register s uni ts , wi th each
i tem stored in one or more consecutive sub-registers; dense
packing, finally, means t ha t storage is al located pr imar i ly
in bi t -posi t ion uni ts , so t ha t each i tem occupies one or more
consecutive bi t positions.

8.2 LIKE TABLE D E C L A R A T I O N S . In some cases, a pro-
gram's e n v i r o n m e n t mus t conta in two or more ins tances
of tables with the same en t ry s t ructure. Such tables m a y
be declared and named, using a previously-defined table as
a pa t te rn , wi th a like table declarat ion, by adding a dis-
t inguish ing let ter or numera l to the pa t t e r n tab le ' s name.

like-table-declaration ::= TABLE o nameof_p~tur,_t~,o (letter [
numeral) o (null [table-type o Innl lberof-cnt r ics) o (null [entry-
type) o (null [packing-mode) o Lik. o $
Examples:

TABLE AIBBASE'WEATHEI{0 L $
TABLE A1RBASE'WEATHERX R 1 N L $

The composi t ion and s t ruc ture of the like tab le ' s entr ies
are t a ke n as being generated by the declarat ions describing
the p a t t e r n tab le ' s entries, with the exception t ha t all
i tem names are suffixed wi th the dis t inguishing le t ter or
numeral . 9 The like table m a y have its own descript ions of
type and length, en t ry s t ructure , and i tem packing, how-
ever, or by omission, it m a y re ta in those of the pa t t e rn

table.

8.3 SPECIFIED ENTRY-STRUCTUI¢E TABLE DECLARATIONS.
I t is of ten necessary to declare a table with a specific and
prede te rmined (and even variable) en t ry s t ructure . The
specified en t ry - s t ruc tu re table declarat ion provides com-
plete control over the s t ructure of table entr ies by means
of the s t ruc tured i tem declarat ion and the s t r ing i tem
declaration.

structured-item-declaration ::= ITEM o nameof_i~m o description
o numberwo~d_i.ao~ o number,,it.i,,a~ o (null [packing-mode) o $

string-item-declaration ::= STRING o nameof_it~m o description
o number~ord-ind~x o numberl)~t_i.,t~ o (null] packing mode) o
nuInberfrequency-of-occurrencc o nunlberof-i tems-pcr-word o $
Examples:

ITEM K E Y A 6 U 3 12 $
STRING BEAD H 2 4 00 O 1 3 $

Several elements must be added to complete the de-
scription of i tems for specified en t ry - s t ruc tu re tables. Such
descriptions also conta in a word-index n u m b e r and a bi t-
index number . Together , these indicate the origin, in te rms
of word wi th in en t ry and bi t wi th in word / ° of the storage

s Many computers have instructions that, by effectively par-
titioning memory registers into two or more segments, greatly
facilitate extracting values from or inserting them into these "sub-
register" segments.

9 Names so constructed are subject to the normal requirements
for uniqueness.

~0 Word 0 bit 0 indicates the first bit position in the entry.

728 Communica t ions of the ACM Volume 6 / Number 12 / December, 1963

cell containing the item. Packing mode m a y be included
in such an i tem description to indicate whether this storage
cell consists of one or more registers (no packing), of one
or more subregisters (medium packing), or of one or more
bit positions (dense packing).

A string item occurs in a specified entry-structure table
not just once but many times per entry. The number of
such occurrences may vary from entry to entry. (Keeping
t rack of this variat ion is most commonly done by de-
claring and maintaining a control item, as par t of the
entry, in which a count of the number of occurrences is
kept.) Two additional elements are appended to the de-
scription of string items. The first indicates frequency of
occurrence in terms of the number of words to the next
occurrence of the string i tem in the entry. ~1 The second
indicates the number of occurrences of the string i tem per
word.

In designating the value of any particular string i tem
in a specified entry-structure table, a 2-component index
list must be appended, as a subscript, to the string i tem's
name. The first component distinguishes the item within
the entry (starting with a 0 index), and the second dis-
tinguishes the entry itself. Structured i tem declarations
and string i tem declarations are incorporated into struc-
tured entry lists and thus into specified entry-structure
table declarations.

structured-entry-list ::= (structured-item-declaration] struc-
tured-item-declaration o BEGIN o 1-dimensional-constant-list
o END I string-item-declaration [string-item-declaration o
BEGIN o 2-dimensional-constant-list o END) o (null [structured-
entry-list)

specified-entry-structure-table-declaration ::= TABLE o (null]
nameof-t~bl¢) o table-type o numberof-e=t~ie~ o (null [entry-type> z
numberof d~-p try ° $ ° BEGIN o structured-entry-list o
END

Example, which declares a table each of whose entries
associates a topic-phrase with a variable number of docu-
ment references:

TABLE A U T O M A T I C ' I N D E X V 20000 S 1 $
B E G I N

ITEM T O P I C ' P H R A S E H 33 0 00 D $
ITEM N U M B E R ' O F ' R E F E R E N C E S A 12 U 5 24 D $
S T R I N G D O C U M E N T ' R E F E R E N C E A 18 U 6 00 D 1 2 $

END
Assuming a 36-bit word-size, T O P I C ' P H R A S E starts

in word 0 bit 00 of each entry; N U M B E R ' O F ' R E F E R -
ENCES starts in word 5 bit 24; and the first D O C U M E N T ' -
R E F E R E N C E starts in word 6 bit 00, appearing there
and in each word thereafter, twice per word - - to the num-
ber of references specified.

For fixed-length entries, the number of words per entry
in a specified entry-structure table declaration simply indi-
cates entry length. For variable-length entries, however,
it must indicate some common divisor of all the different
possible entry lengths. (Often, this is most conveniently

n Where a frequency of occurrence k is indicated, every kth
word after the first occurrence of the string item contains similarly
allocated occurrences.

one.) In either ease, the indicated number of words per
entry is used as a factor both in allocating and in indexing
the table. 1~

The other elements in a specified entry-structure table
declaration have the same meaning they would have in an
ordinary table declaration. Serial ent ry- type must be indi-
cated for a table with variable-length entries, though.
Notice tha t overlay declarations are not needed in specified
entry-structure table declarations, since storage allocation
within the entry is explicitly indicated.

9 . F u n c t i o n a l M o d i f i e r s

Functional modifiers are, in a sense, extensions to basic
JOVIAL, which is essentially an i tem-manipulat ing language.
They facilitate the manipulat ion both of larger da ta ele-
ments (i.e., entries and tables) and of smaller data ele-
ments (i.e., segments of the machine-language symbols
representing i tem values).

9.1 THE N E N T MODIFIER. A vital parameter in table
processing is number of entries. The functional modifier
N E N T allows this unsigned, integral value to be designated
for variable-length tables, and denoted for rigid-length
tables.

numeric-variable ::= Number-of ENTries o (o
nanleof-variable-length-~able-or-table-item o)

numeric-formula ::= Number-of ENTries ° (o
nameof-rigid-length-table-or-table-item o)

Example, which records the addition of a new entry to
the (variable-length) P A Y R O L L table:

NENT (PAYROLL) ---- NENT (PAYROLL) 4- 1 $

For variable-length tables, N E N T serves as a counter
tha t must be maintained by the program itself whenever
it changes the table 's length. (Initially, the value desig-
nated by N E N T for a variable-length table is undefined.)
For rigid-length tables, on the other hand, N E N T serves
as a preset compilation parameter in denoting table-length.

9.2 THE N W D S E N MODIFIER. Another parameter in
table processing is the amount of storage allocated to a
table entry (and thus to the entire table). This unsigned,
integral value, which is constant throughout the execution
of the program, is expressed in number of words (or
registers) per entry.

numeric-formula ::= Number-of WorDSper ENtry o (°
nameof- tab le-or table-item o)
Example:

P A Y R O L L ' L E N G T H ---- NWDSEN (PAYROLL) * N E N T (PAY-
ROLL) $

Though ordinarily seldom used, N W D S E N is needed in
executive programs tha t do dynamic storage allocation.

9.3 THE ALL MODIFIER. A very common loop in Jow~L
programming cycles through an entire table, processing

1~ In a Serial entry-type, specified entry-structure table with i
entries andj words per entry, entry k refers to the entry beginning
in word j*k of the (i*j)-word table. In a similar, Parallel entry-
type table, entry k begins in word k and continues in words k -4- i,
k + (2.i), k + (3.i), etc.

Volume 6 / Number 12 / December, 1963 Communications of the ACM 729

one e n t r y each pass. S u c h a loop c a n be c r e a t e d w i t h a

fo r -c lause t h a t uses t h e A L L modi f ie r .

for-clause : := FOR o loop-counter o = o ALL o (o
n a m e o f - t a b l e - o r - t a b l e - i t e m o) o S

Example:
F O R T ---- ALL (PAYROLL) $

T h e use of a fo r -c lause c o n t a i n i n g t h e A L L modi f i e r c r ea t e s

a loop w i t h a n u n d e f i n e d d i r e c t i o n of p rocess ing ; t h a t is,

e n t r y 0 is p rocessed e i t h e r on t h e f irs t o r on t h e las t pass

t h r o u g h t h e loop.

9.4 THE E N T R Y MODIFIER. AS m e n t i o n e d before , a

t a b l e e n t r y is a c o n g l o m e r a t i o n of r e l a t e d i t ems . T h e

E N T R Y mod i f i e r a l lows an e n t r y to be t r e a t e d as a s ingle

va lue , r e p r e s e n t e d b y a s ingle, c o m p o s i t e ~3 m a c h i n e - l a n -

guage symbo l .
entry-variable : := E N T R Y o (o nameof-tabl t a b l e - i t e r a o (S o

indexof.,=t~y o $) o)
entry-formula : := 0 [entry-var iable
boolean-formula : := entry-variable o (EQ] NQ) o entry-formula
assignment-statement :: = entry-variable o = o entry-formula o $
exchange-statement : := entry-variable o = = o entry-variable o $

Example, which eliminates "empty" entries from the
P A Y R O L L table ::
FOR I = ALL (PAYROLL) $

B E G I N SEEK'EMPTY.
I F E N T R Y (PAYROLL(SIS)) EQ 0 $

B E G I N
NENT (PAYROLL) = NENT (PAYROLL) - - 1 $
I F I LS NENT (PAYROLL) $

B E G I N
E N T R Y (PAYROLL(SIS)) = = E N T R Y (PAYROLL

($NENT(PAYROLL)$)) $
GOTO S E E K ' E M P T Y $

END END END

The index subscripting the table or table-item name
distinguishes the entry from others in the table. An entry 's
value may be denoted by 0 if all its items have values
represented by zero; otherwise its value is not denotable.
Comparing (for equality or inequality), assigning, and
exchanging of entry values all operate as if on unsigned
integers. ~4

9.5 THE B I T A~-D B Y T E MODIFIERS. The machine-lan-
guage symbol representing any item's value may be con-
sidered a string of bits; or, in the case of literal items, of
6-bit bytes (or characters). In either case, both bits and
bytes are indexed from left to right, starting with 0.
numeric-variable : := B I T o (S ° indexot-fir~t-~t o (null I , o

indexof her-of-bits) ° $) ° (o nameof_it~m o (null] subscript) o)
l i teral-variable : := BYTE o (S ° i n d e x o f - f i r s t - b y t e o (null] , o in-

dexof bet-of-bytes) o $) o (o nameot-iit~r~l-it~m o (null] subscript)
o)
Example:

CONVERT'CARD'I [MAGE. "A R O U T I N E TO CONVERT
FROM A PUNCHED CARD IMAGE TO AN 80-CHARACTER,
H O L L E R I T H - C O D E D , L I T E R A L VALUE. I L L E G A L ' JUNCH
COMBINATIONS ARE NOT R E J E C T E D AND MAY CAUSE
S P U R I O U S R E S U L T S . "

~s Composite as stored, not as declared, since item overlays and
unused cells arc not unscrambled.

~4 When different-size entries arc involved, then, the shorter is
(in effect) prefixed by registers containing zero.

B E G I N
A R R A Y P U N C H 12 80 B $ I T E M C A R D H 80 $ I T E M C O L U M N

H I S
F O R J = 0,1,79 $

BEGIN
COLUMN = O(00) $
F O R I = 0,1,11 $

BEGIN
I F PUNCH(I , J) $

BEGIN
IF I LQ 2 $ BIT($0,6$)(COLUMN) = BIT($0,6$)

(COLUMN) "1" (I+1) * 0(20) $
I F I GR 2 $ BIT($0,6$)(COLUMN) = BIT($0,6$)

(COLUMN) + (1--2) $
END END

BYTE(J) (CARD) = COLUMN $
END END

T h e B I T mod i f i e r a l lows a n y s e g m e n t of t h e b i t - s t r i n g

r e p r e s e n t i n g t h e v a l u e of a n y i t e m to be d e s i g n a t e d as a n

uns igned , i n t e g r a l v a r i a b l e . S imi l a r ly , t h e B Y T E m o d i f i e r

a l lows a n y s e g m e n t of t h e b y t e - s t r i n g r e p r e s e n t i n g t h e

v a l u e of a n y l i t e ra l i t e m to be d e s i g n a t e d as a l i t e ra l

v a r i a b l e . T h e first b i t o r b y t e of t h e s e g m e n t a n d t h e

n u m b e r of b i t s o r b y t e s in t h e s e g m e n t a r e speci f ied b y

t h e 2 - c o m p o n e n t i ndex l ist a p p e n d e d to t h e modi f ie r . I f

a one -b i t o r o n e - b y t e s e g m e n t is des i red , t h e second c o m -

p o n e n t of t h e i ndex l ist , s pec i fy ing n u m b e r of b i t s o r

by tes , m a y be o m i t t e d .

9.6 THE M A N T AND C H A R MODIFIERS. A f l o a t i n g - p o i n t

m a c h i n e - l a n g u a g e s y m b o l r e p r e s e n t i n g a n u m e r i c v a l u e

cons is t s of: a m a n t i s s a , w h i c h is a s igned f r a c t i o n rep re -

s e n t i n g t h e s ign i f i can t d ig i t s of t h e v a l u e ; a n d a c h a r a c t e r -

is t ic , w h i c h is a s igned i n t e g e r r e p r e s e n t i n g t h e base t w o

e x p o n e n t of a n i m p l i c i t sca l ing f a c t o r for t h e m a n t i s s a .

E i t h e r c o m p o n e n t of a n y f l o a t i n g - p o i n t i t e m c a n be des ig-

n a t e d as a f i xed -po in t v a r i a b l e .

numeric-variable : := (M A N T i ~ [CHAR~ot~ristio) o (o
nalneof-floatlng-polnt-item o (null] subscript) o)

Example, which specifies the fixed-point value of the
floating-point item, BETA:

MANT (BETA) * 2 ** CHAR (BETA)

9.7 THE ODD MODIFIER. In numeric computations, it is
occas iona l l y n e c e s s a r y to d e t e r m i n e w h e t h e r t h e l eas t sig-

n i f i can t b i t of t h e m a c h i n e - l a n g u a g e s y m b o l r e p r e s e n t i n g

t h e v a l u e of a loop c o u n t e r o r of a n u m e r i c i t e m r e p r e s e n t s

a m a g n i t u d e of one, or of z e r o - - f o r in tegers , in o t h e r words ,

w h e t h e r t h e v a l u e is o d d or even . 15

boolean-variable : := ODD o (o loop-counter o) [ODD o (o
nameof-floating-or-fixed-point-item o (null I subscript) o)
Examples:

ODD(I)
ODD (GAMMA(X,Y,Z))

W i t h t h e O D D modi f ie r , t h e l eas t s ign i f i can t b i t of a n y

loop c o u n t e r o r f loa t ing- o r f i xed -po in t i t e m c a n be des ig-

n a t e d as a B o o l e a n v a r i a b l e : T r u e if i t r e p r e s e n t s a m a g n i -

t u d e of o n e ; F a l s e if i t r e p r e s e n t s a m a g n i t u d e of zero.

~5 ODD is somewhat of a misnomer when applied to non-integral
values.

730 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 6 / N u m b e r 12 / D e c e m b e r , 1963

10 . M i s c e l l a n e o u s D e c l a r a t i o n s a n d S t a t e m e n t s

10.1 INITIAL VALUE DECLARATIONS. I t is often necessary
to declare items with specific initial values, for use as:
preset parameters, arrays and tables of constants, or initial
data. The initial value of a simple i tem m a y be denoted,
within either an i tem declaration or a mode declaration,
by a single constant , which mus t denote a value assignable
to the item. This constant m a y be inserted after the i tem
description and the P for Preset descriptor, or it m a y
replace these entirely for numeric and literal values. An
ar ray item, table item, or string item, on the other hand,
is initialized by a constant list, appended to the declara-
tion. This constant list mus t correspond bo th in dimension
and assignability to the i tem it presets.
1-dimensional-constant-list : := constant o (null [1-dimensional-

constant-list)
n-dimensionM-constant-list : := BEGIN o n-l-dimensional-con-

stant-list o END o (null [n-dimensional-constant-list)
initial-vMue-declaration ::= (ITEM o n a m e o f - i t e m I MODE} o

(description o Preset ° constant I numeric-constant I literal-
constant) o $ [array-declaration o BEGIN o n-dimensional-con-
stant-list o END [table-declarationco=t~i.i.g ,ant-lists
Examples:

ITEM E R R O R 1.234E--5 $
ITEM READY B P 0 $

MODE A 15 U P 0(77777) $
A R R A Y L E T T E R ' A 6 5 B $
B E G I N

B E G I N 0 0 1 0 0 END
B E G I N 0 1 0 1 0 END
B E G I N 1 0 0 0 1 END
B E G I N 1 1 1 1 1 E N D
B E G I N 1 0 0 0 1 END
B E G I N 1 0 0 0 1 END

END
TABLE R 12 $
B E G I N
ITEM M O N T H H 3 $ B E G I N 3 H (J A N) 3H(FEB) 3 H (MA R)

3H(AP R) 3H(MAY) 3 H (J U N) 3H(JUL) 3 H (A U G) 3H(SEP)
3H(OCT) 3 H (N O V) 3H(DEC) END

ITEM L E N G T H A 5 U $ BEGIN 31 28 31 30 31 30 31 31 30 31
30 31 END

END

Adopt ing the convent ion tha t a list of individual con-
s tants is a 1-dimensional cons tant list, an n-dimensional
constant list consists of a string of n - 1 - d i m e n s i o n a l con-
s tan t lists, each enclosed in B E G I N and E N D brackets.
Individual constants in a constant list are associated with
individual array, table, and string items as follows: The
kth component of an index list subscripting the i tem name
serves to index the elements of a k-dimensional constant
list. (To make this rule valid for multi-dimensional arrays,
however, the positions of the first and second components
of the index list for such arrays mus t be considered as
being reversed- - thus : second component , first component ,
th i rd component , four th component , etc. ~6)

The constants in a constant list mus t all be the same

~6 This rather strange reversal retains the convention of in-
dexing first by row then by column, while allowing rows to be
written (as 1-dimensional constant lists) across the page.

type and they must, of course, denote values tha t are
assignable to the items being initialized. Par t ia l initiali-
zat ion is possible. A constant list t ha t contains lc elements
(constants or constant lists) where it could have more will
initialize only the first k corresponding items or i tem sets,
leaving the remaining values undefined.

10.2 OVERLAY DECLARATIONS. An overlay declaration,
by allocating blocks of storage space, indicates the ar-
rangement , in memory , of previously-declared items,
arrays, and tables.
block-list : := n a m e o f - i t e y-or-table o (null [, o block-list)
overlay-list ::= block-list o (null I ---- o overlay-list>
overlay-declaration ::= OVERLAY o overlay-list o $

Examples:
O V E R L A Y HEAD, B O D Y , TAIL $
O V E R L A Y A L P H A _ - - B E T A : G A M M A $
O V E R L A Y DATE-- - -DAY,MONTH,YEAR $

The da ta elements named in a block list are allocated,
in sequence, 17 a block of consecutive units of storage. For
arrays and tables, these units are full m e m o r y registers.
For items, the units are registers, subregisters, or bit po-
s i t i o n s - d e p e n d i n g on whether the i tem packing mode is
No packing, Med ium packing, or Dense packing2 s E a c h
block listed in an over lay declarat ion is allocated storage
beginning at a common, t hough undefined, origin. E a c h
block thus "over lays" the other blocks listed in the decla-
ration.

A name m a y appear only once in an overlay declaration,
bu t m a y appear in other overlay declarations if logical
inconsistencies are avoided. To arrange storage allocation
for table items, the overlay declarat ion mus t appear within
the ordinary table declaration. (However, such an overlay
declarat ion m a y contain only i tem names previously de-
clared within the same en t ry list.)

10.3 DEFINE DECLARATIONS. A define declarat ion estab-
lishes an equivalence between a name and a string of signs
by effectively causing the sign string to be subst i tuted for
the name wherever it m a y subsequent ly occur as a separate
JOVIAL symbol. This allows the p rogrammer to abbrevia te
lengthy expressions, to make simple addit ions to the lan-
guage, and to create symbolic parameters .
define-declaration ::= DEFINE o name o "

sign-stringexeept-t~ yrabol " o $

Examples:
D E F I N E C A R D ' S E Q U E N C E "V(JOKER) V(ACE) V (D E U C E)

V (T R E Y) V (F O U R) V (F I V E) V (S I X) V (S E V E N) V (E I G H T)
V(NINE) V(TEN) V(JACK) V(QUEEN) V(KING)" $

D E F I N E U N S I G N E D "U" $
D E F I N E TH E " " $
D E F I N E R A N K "85" $

I n using define declarations, several points should be
remembered: (1) The sign string being defined should
contain at least one sign (which m a y be a blank) bu t m a y
not contain a " symbol since this, of course, terminates it.

17 Except for packed table items, which may be rearranged for
storage efficiency.

~s Outside of ordinary table declarations, "normal" item pack-
ing mode is compiler-dependent.

V o l u m e 6 / Number 12 / December, 1963 Communica t ions of t h e ACM 731

(2) No comments may appear in a define declaration.
(3) A defined name should be used only in a context where
the sign string it defines will comprise an acceptable
JOVIAL expression. (4) Circular definitions are possible and
must be avoided. (5) A defined name may be redefined at
a later point in the program listing, and the latest definition
will thereafter be substi tuted for occurrences of the name.

10.4 STOP STATEMENTS. A stop s ta tement halts or in-
definitely delays the sequence of s ta tement executions, and
usually indicates an operational end to the program in
which it appears. I f the program is restarted, execution
will resume with the next s ta tement listed unless some
other s ta tement is named in the stop statement.
s t o p - s t a t e m e n t : := S T O P o $ I S T O P o

nameof-next-statement-to-be executed o S
Examples:

S T O P $
S T O P T A S K ' 4 $

10 .5 DIRECT-CODE STATEMENTS. A d i r e c t - c o d e s t a t e m e n t

allows the programmer to include a routine coded in a
"direct" or machine-oriented programming language
among the s tatements of a JOVIAL program. So tha t such
a routine may manipulate JOVIAL item values, it may
include a JoViAL-like assign statement. Such a s ta tement
assigns the value contained in the "accumula tor" (an un-
defined machine register) to be the value designated by an
i t em - -o r vice versa.
a c c u m u l a t o r : := A 1,to~ ((nul l I s i gned numberof.fraetion-blts))
a s s i g n - s t a t e m e n t : := A S S I G N o a c c u m u l a t o r o ---- o nameof_i t~

o (null I subscript ' , , o $ I A S S I G N o nameof_item o (null I subsc r ip t}
o ---- o a c c u m u l a t o r ° $

d i r ec t - code : := (sign-stringexc~pt-the-JOVlAL-bracket I a s s i g n - s t a t e -
men t} o (null I direct-code>

d i r e c t - c o d e - s t a t e m e n t : : = D I R E C T o d i r ec t - code o J O V I A L

The accunmlator is designated by the letter A followed
by a parenthesized number indicating the number of
fractional bit positions within the register--usual ly zero
for all but fixed-point numeric values. I f the integer is
omitted, the register contains a floating-point numeric
value.

The effect of a direct-code statement, being machine
dependent, is undefined.

10.6 ALTERNATIVE STATEMENTS. A Boolean formula and
the associated simple or compound s ta tement following
it together constitute an alternative. An alternative state-
ment, consisting mainly of a string of alternatives sepa-
rated by the O R I F symbol, selects for execution the one
such s ta tement associated with the first True Boolean
formula in the string, if any. The effect of an alternative
s ta tement is therefore equivalent to tha t of the selected
s ta tement by itself2 9
a l t e r n a t i v e : := b o o l e a n - f o r m u l a o $ o (s i m p l e - s t a t e m e n t l com-

p o u n d - s t a t e m e n t }
a l t e r n a t i v e - l i s t : := O R I F o a l t e r n a t i v e ° (null [a l t e rna t ive - l i s t } [

n a m e ° . o a l t e r n a t i v e - l i s t
a l t e r n a t i v e - s t a t e m e n t : : = I F E I T H o : o a l t e r n a t i v e o M t e r n a t i v e -

l i s t o E N D

1~ I g n o r i n g f u n c t i o n s ide-ef fec ts .

Example:
I F E I T H N U M B E R E Q 0 $ S I G N = 0 $
O R I F N U M B E R G R 0 $ S I G N ---- -l-1 $
O R I F 1 $ S I G N = - - 1 $
E N D

Statement names can be inserted in the string of al-
ternatives so tha t an appropriate go-to s ta tement can skip
the initial ones.

10.7 CLOSED STATEMENTS. A closed s ta tement is a closed
and parameterless subroutine whose execution may only
be correctly invoked by an appropriate go-to s tatement .
The normal successor to a closed s ta tement is the state-
ment listed after the invoking go-to s tatement .
c l o s e d - s t a t e m e n t : := C L O S E o nanleof-closed-statement o $ o (s imple-

s t a t e m e n t [c o m p o u n d - s t a t e m e n t)
Example:

C L O S E S H E L L ' S O R T $ "A C L O S E D S T A T E M E N T W H I C H
S O R T S A T A B L E ' S E N T R I E S B Y K E Y I T E M , U S I N G
S H E L L ' S S O R T I N G A L G O R I T H M AS D E S C R I B E D IN A C M
C O M M U N I C A T I O N S , J U L Y 1959."
B E G I N
D E F I N E K E Y " n a m e of t ab le i t e m " $ " T O B E F I L L E D I N B Y
T H E U S E R B E F O R E C O M P I L A T I O N . "
I F N E N T (K E Y) G R 1 $

B E G I N
F O R M ---- N E N T (K E Y) / 2 , - - (M -I- 1), 1 $

B E G I N
F O R J = 1, 1, N E N T (K E Y) - - M $

B E G I N
F O R I = J - - l , - - M , 0 $

B E G I N
I F KEY(SIS) G R K E Y ($ I + M $) $ E N T R Y (KEY(SIS))

: _ - - E N T R Y (KEY($I - I -M$)) $
E N D E N D E N D E N D E N D

In using any closed s tatement , the programmer must
see tha t it is entered only by a go-to s ta tement referring
to it by name (e.g., G O T O S H E L L ' S O R T $,) never by
the name of any of the s ta tements within it, and never as
par t of the normal, listed sequence of s ta tement executions.
Furthermore, while a closed s ta tement may call other
closed statements, it may not call i tself--ei ther directly or
indirectly.

10.8 RETURN STATEMENTS. A return s ta tement indicates
a transfer of control to the implicit exit routine tha t is
automatical ly inserted after the last listed s ta tement within
a closed s ta tement or a procedure. A return s ta tement
may therefore appear only within a closed s ta tement or a
procedure.

r e t u r n - s t a t e m e n t : := R E T U R N o $
Example:

R E T U R N $

11. P r o c e d u r e s

A procedure is a self-contained subroutine with a fixed
and ordered set of parameters. A procedure is permanent ly
defined by a procedure declaration and invoked either by
a procedure s ta tement or by a function.

The actual parameters of a procedure s ta tement or a
function are either (1) values, as specified by input for-
mulas or designated by output variables, or (2) names,

732 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 6 / N u m b e r 12 / D e c e m b e r , 1963

indicat ing arrays, tables, or s ta tements . The formal pa-
rameters of a procedure declarat ion are " d u m m y " names,
corresponding to the actual parameters of the procedure
s ta tement or the function.
actual-input-parameter-list : := (formula] nameof y-or-tablo> °

(null I , ° actual-input-parameter-list)
formal-input-parameter-list ::= name o (null [, o formal-input-

parameter-list}
actual-output-parameter-list : := (variable] nameof y-or-table [

nameof-~t~t~m~nt o .) o (null I , ° actual-output-parameter-list)
formal-output-parameter-list ::= (name [name o .) o (null] , o

formal-output -parameter-list)
The ac tual parameters of a procedure s ta tement or a

funct ion m u s t correspond to formal parameters of the pro-
cedure declaration both in number and in sequence. (Actual
parameters m a y not, therefore, be omitted.) I n addit ion,
an actual parameter mus t agree with its corresponding
formal p a r a m e t e r - - i n da ta type (i.e., numeric, literal,
status, or Boolean) for "va lue" parameters , and in gram-
mat ical usage for " n a m e " parameters . Note tha t an ou tpu t
parameter which is or which corresponds to a s ta tement
name, mus t be followed by the . (period) separator.

11.1 PROCEDURE DECLARATIONS. A procedure declara-
t ion consists of: a heading, which declares the procedure 's
name and lists its formal parameters , if any ; a list of
declarations, which describe the information envi ronment
peculiar to the procedure, if any ; and a compound state-
ment , which forms the body of the procedure.

declaration-list : := declaration o (null [declaration-list)
formal-parameter-list ::= formal-input-parameter-list] ~ o

formal-output-parameter-list [formal-input-parameter-list o
_-- o formal-output-parameter-list

procedure-declaration ::= PROCedur, o n a m e o f - , r o c e d u r e o (null [(o
formal-parameter-list o)} o $ o (null t declaration-list) o com-
pound-statement
Examples:

P R O C S E T ' D I A G O N A L (VALUE----MATRIX,NONE.) $
"WHICH A S S I G N S THE I N P U T VALUE TO T H O S E ITEMS
ON THE MAIN DIAGONAL OF ANY 50 X 50 FLOATING-
POINT M A T R I X T H A T ARE R O U G H L Y EQUAL TO TH E
INPUT VALUE. IF NO A S S I G N M E N T S ARE MADE, TH E
P R O C E D U R E EXITS TO 'NONE'."
ITEM VALUE F R $
A R R A Y M A T R I X 50 50 F R $
ITEM NO'ASSIGNMENT B $
B E G I N
N O ' A S S I G N M E N T ~-- 1 $
FOR I ---- 0, 1, 49 $

B E G I N
IF CHAR (VALUE) EQ CHAR (M A T R I X ($ I , I $)) $

B E G I N
MATRIX(I,I) ---- VALUE $
NO'ASSIGNMENT = 0 $

END END
IF NO'ASSIGNMENT $ GOTO NONE $
END
PROC RANDOM $ "FUNCTION. MULTIPLICATIVE

P S E U D O - R A N D O M N U M B E R G E N E R A T O R . "
ITEM RANDOM A 48 U P 5391821890627261 $
ITEM T E M P O R A R Y A 96 U $
B E G I N
T E M P O R A R Y ---- R A N D O M * R A N D O M $
R A N D O M ---- BIT($24 ,485) (TEMPORARY) $
END

Those formal parameters corresponding to actual,
"va lue" parameters mus t be declared as (simple) items in
the declarat ion list. Those corresponding to arrays or
tables mus t be declared in the declarat ion list as ar rays or
tables, to provide the procedure with a fixed definition of
their s tructure, as only their storage locations are trans-
mi t ted to the procedure.

Names declared inside a procedure, bo th formal pa-
rameters and otherwise, are defined for the procedure only.
T h e y bear no relation to identical names used outside the
p r o c e d u r e - - t h o u g h outside names can, of course, be used
inside procedures.

JOVIAL procedures m a y invoke other procedures, either
th rough funct ions or th rough procedure s ta tements . How-
ever, they m a y not invoke themselves, either directly or
indirectly.

I n order for a procedure to specify a funct ion value, the
procedure name itself mus t be considered the sole, formal
ou tpu t parameter . I t mus t be declared as an i tem in the
procedure 's declarat ion list and it should be assigned the
funct ion value dur ing the execution of the procedure.

11.2 PROCEDURE STATEMENTS. To execute the process de-
fined in a procedure declaration, it is necessary to invoke
the procedure by a procedure s ta tement (or by a function).
A procedure s ta tement , which m a y be though t of as an
abbrevia ted description of the process it invokes, has a
format similar to t h a t of the heading par t of a procedure
declaration.

actual-parameter-list ::= actual-input-parameter-list [~ o
actual-output-parameter-list] actual-input-parameter-list o _--
o actual-output-parameter-list

procedure-statement ::= nameof-prooedur¢ o (null] (o actual-param-
eter-list o)) o $
Examples:

S E T ' D I A G O N A L (0. ---- A L P H A , E R R O R .) $
C O M P L E X ' A D D (REAL(SIS) + 1,IMAG(I),BETA**2,

BETA_-- REAL(I),IMAG(I)) $

The procedure is executed as if its formal parameters
either designated ac tua l -parameter values, or were re-
placed by ac tua l -parameter names. To effect this, formal
input -parameter i tems are assigned corresponding actual
inpu t -parameter values prior to the execution of the pro-
cedure, and formal ou tpu t -pa ramete r i tem values are as-
signed to corresponding actual ou tpu t -pa rame te r variables
after this execution. (For this purpose, the execution of a
procedure is considered te rmina ted only by the execution
of the last s t a tement listed in the procedure declaration, by
the execution of a re turn s ta tement , or by the execution of
a go-to s ta tement containing a formal ou tpu t parameter
t ha t denotes a s ta tement name.)

12. S w i t c h e s

A switch is a routine for comput ing a s ta tement name
and, thus, for deciding among several a l ternate sequences
of operation. I t is pe rmanen t ly defined by a switch decla-
ra t ion and invoked by a switch call. A switch declarat ion
consists pr imari ly of a switch list, whose major elements

Volume 6 / Number 12 / December, 1963 Communica t ions of t h e ACM 733

are statement names or switch calls. The routine invoked
by a switch call selects one of these elements, thus de-
termining (perhaps by another switch) the "value" of the
switch.

JOWAL has two kinds of switches: the index switch,
whose value is determined by an index specified in the
switch call; and the item switch whose value is determined
by the value of an item named in the switch declaration.
index-swi tch- l i s t : := (null] nalneof-stateraent I switch-call) o

(null [, o index-switch- l is t)
i t em-swi tch- l i s t : := c o n s t a n t o : o (nameof-statement l switch-cal l)

o (null I , o i t em-swi tch- l i s t)
swi t ch -dec la ra t ion : := S W I T C H o nameof-i~d itch ° : o (o

index-swi tch- l i s t o) o $ [S W I T C H o nameof_ite it~l~ o (o
nameof.ite file o) o = o (o i t em-swi tch- l i s t o) o $

switch-cal l : := nameof-ind itch o ($ o index~ itch-list o $)
[nameo~-ite itch ° (null] subsc r ip t r itch-item)
Examples:

S W I T C H G E T ' R A T E ~- (G E T ' R A T E ($ D A Y $) ,
S U N D A Y ' R A T E , W E E K D A Y ' R A T E , W E E K D A Y ' R A T E ,
W E E K D A Y ' R A T E , W E E K D A Y ' R A T E , W E E K D A Y ' R A T E ,
S A T U R D A Y ' R A T E) $

G O T O G E T ' R A T E (S I S) $

The index in an index-switch call selects one of the n
positions in the switch list of the corresponding switch
declaration. (This index may therefore range from 0
through n - 1 only.) Any of the positions in an index-
switch list may be empty (null) thus effectively specifying
the first s tatement listed after the switch-invoking go-to
statement.

The item name; given in an item-switch declaration and
the index list (if :any) subscripting the switch name in the
call together designate an item value. This value selects
from the item-switch list in the declaration the statement
name or switch call paired with the first constant in the
list tha t denotes a value equal to it. If no such constant is
listed in the declaration, then the switch effectively speci-
fies the first s tatement listed after the switch-invoking
go-to statement. (The use of a file name in an item switch
is t reated in Section 13.2, Testing and Positioning Files.)

A switch is invoked, directly or indirectly, by a go-to
statement and may compute the name of a closed state-
ment whose normal successor would be the first s tatement
listed after the go-to statement.

13. Input-Output and Files

Many data storage devices impose accessing restrictions
in tha t storing or loading an individual value may, for
efficiency, ordinarily involve the transfer of an entire block
of data. Such devices are termed external storage devices,
as contrasted with the internal memory of the computer.
To allow a reasonably efficient description of input-output
processes, therefore, all data entering or leaving the com-
puter 's internal :memory is organized into files. A file is
thus a body of data contained in some external storage
device, such as punched cards or tape, or magnetic tape,
discs, or drums.

13.1 FILE DECLARATIONS. A file is a list of records, which
are themselves strings of bits or of 6-bit, Hollerith-coded

bytes. A file's records are either all binary or all Hollerith,
and they are generally homogeneous in size, content, and
format. (When heterogeneous records are organized into a
file, the program must provide for distinguishing among
them.) Record format is not described in the file decla-
ration, however, since it is determined by the input or
output records in the statements tha t read or write the
file.

f i le-declaration : := F I L E o nameof-m, o (B i n a r y I H o l l e r i t h) o

numberof as o (V a r i a b l d-length [R i g i d d-length) o

n u I n b e r o f - b i t s - o r - b y t e s - p e r - r e c o r d o s ta tus- l i s t o n a m e o f - s t o r a g e - d e v i c e o S

Examples:
F I L E I N V E N T O R Y B 10000 V 480 V (U N R E A D Y) V (R E A D Y)

V (B U S Y) V (E R R O R) T A P E D R I V E ' A $
F I L E L I N E ' O F ' P R I N T H 500 R 120 V (U N R E A D Y) V (R E A D Y)

L I N E ' P R I N T E R $

In the file declaration, both number of records and
number of bits or bytes per record may be estimated
maximums. The listed status constants are associated with
the file name and denote the possible states of the storage
device containing the file? ° The storage-device name indi-
cates, in compiler-dependent terms, 2~ the particular storage
device containing the file.

13.2 TESTING AND POSITIONING FILES. The status of a
file is denoted by one of the status constants listed in the
declaration. These are associated with the file name, which
may be considered as a status item that is automatically
updated prior to any comparison according to the current
state of the storage device containing the file. File status
may thus be tested with a relational Boolean formula, or
by means of a call to an appropriate item switch.

Examples:
S W I T C H C H E C K ' I N V E N T O R Y ' F I L E (I N V E N T O R Y) ~-

(V (U N R E A D Y) ~ P R O C E S S "F ILE ' E N D ,V (BUS Y) ~. W A I T ,
V (E R R O R) ~ - P R O C E S S ' E R R O R) $

C L O S E W A I T S B E G I N S T E P I . I F I N V E N T O R Y E Q
V (B U S Y) $ G O T O STEP1 $ STEP2. G O T O
C H E C K ' I N V E N T O R Y ' F I L E $ E N D

A JOVIAL file is a self-indexing storage device, meaning
that the record available for transfer to or from the file
depends on the file's current position. The records of an
n-record file are indexed from 0 through n - l , and the
index of the record currently available for transfer is
designated, as file-position, with the functional modifier
POS, operating on the name of an active ~2 file. File position
ranges from 0 (indicating "rewound") thru n (indicating
"end-of-file"). The transfer of a record to or from a file
automatically increments the file position by one. Further-
more, where the storage device allows, file position is a

~0 Storage-device names and the n u m b e r and mean in g of the i r
possible stt~tes are compi le r -dependen t , so t h a t anyone wish ing
to declare a workab le file m u s t refer to the p e r t i n e n t d o c u m e n t a -
t ion for ~ p a r t i c u l a r JOVIAL compiler .

2t Th i s name m a y indicate such th ings as : d r u m or disk address ;
file-index for multi-fi le t apes ; etc.

2~ An act ive file is one t h a t has been " a c t i v a t e d " by the exe-
cu t ion of an open - inpu t or an o p e n - o u t p u t s t~ te inent , as descr ibed
in the fol lowing sect ions.

734 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 6 / N u m b e r 12 / D e c e m b e r , 1963

variable tha t may be altered by the assignment of an
arbitrary numeric value. The file is then called an address-
able file, as opposed to a serial file, where such a general
positioning operation is to be avoided as impossible or in-
efficient.
n u m e r i c - v a r i a b l e : : = P O S i t i o n o (o nameof - ac t l ve4ne o)

Example:
P O S (I N V E N T O R Y) ---- 0 $

13.3 INrVT STATEMENTS. A file may be read, one record
at a time, by the execution of a series of input statements.
The first statement executed in such a series must be an
open-input statement, which activates the file, and the
last must be a shut-input statement, which deactivates it.
Input records so read may be variables, entire arrays,
enth-e tables, sequences of table entries, or individual table
entries.
i n p u t - r e c o r d : : = v a r i a b l e] narneof y] nameof-t~ble] nameof-table

o ($ o indexof.flr~.~nt~y indexof-tast-~.try o $)] nameof-tabl~ o
($ o indexof.e~try o $)

i n p u t - s t a t e m e n t : : = O P E N o I N P U T o nameof-ln~ctive-file o
<null] i n p u t - r e c o r d > o $] I N P U T o nameof-active-fil~ o i n p u t -
r e c o r d o $ [S H U T o I N P U T o nameof-actlw-file o (nul l [i n p u t -
record) o $
Example:

BEGIN
OPEN INPUT INVENTORY $
PROCESS'INVENTORY. INPUT INVENTORY ARTICLE $
GOTO CHECK'INVENTORY'FILE $
GOTO PROCESS'ARTICLE $
GOTO PROCESS'INVENTORY $
PROCESSTILE'END. SHUT INPUT INVENTORY $
END

A read operation transfers the string of bits or bytes
comprising a file record from the file into the computer's
internal memory, to represent the value or values of a
designated input record. A read is terminated when the
entire input record has been represented. (Any bits or
bytes left in the file record go unread and are skipped
over.) A read is also terminated when the string of bits or
bytes of the file record is exhausted. (The remainder of the
input record, if any, is undefined.)

An open-input statement activates an inactive file and
initializes its position to zero. A shut-input statement de-
activates an active file. Any input statement that desig-
nates an input record initiates a read operation that will
transfer a record from the file into the computer's internal
memory, thus incrementing file-position by one.

If the (compiler-dependent) file characteristics permit /a
an input or shut-input statement may involve a file acti-
vated by an open-output statement.

13.4 OUTPUT STATEMENTS. A file may be written, one
record at a time, by the execution of a series of output
statements. The first statement executed in such a series

23 S o m e files a r e w r i t e - o n l y in t y p e .

must be an open-output statement, which activates the
file, and the last must be a shut-output statement, which
deactivates it. Output records so written may be numeric
or literal constants, variables, arrays, etc.
o u t p u t - r e c o r d : : = n u m e r i c - c o n s t a n t [l i t e r a l - c o n s t a n t I i n p u t -

r e c o r d
o u t p u t - s t a t e m e n t : : = O P E N o O U T P U T o nameof-ln~otive-file o

(nul l [o u t p u t - r e c o r d) o $] O U T P U T o nameof-aotiw-file °
o u t p u t - r e c o r d o $] S H U T o O U T P U T o nameof-actlve-fne °
(nul l I o u t p u t - r e c o r d) o $
Examples:

O P E N O U T P U T P E R S O N N E L ' F I L E $
O U T P U T P E R S O N N E L ' F I L E E M P L O Y E E ' R E C O R D

($I...I+505) $
S H U T O U T P U T P E R S O N N E L ' F I L E E M P L O Y E E ' R E C O R D

($I . . . N E N T (E M P L O Y E E ' R E C O R D) ~ I $) $

A write operation transfers the string of bits or bytes
representing a designated output record from the com-
puter's internal memory out onto the file, as a file record.
A write is terminated when the entire output record has
been transferred. (For rigid record-length files, the re-
mainder of the file record, if any, is undefined.) A write is
also terminated when the number of bits or bytes trans-
ferred equals the declared maximum file-record size.

An open-output statement activates an inactive file and
initializes its position to zero. A shut-output statement
deactivates an active file. Any output statement that
designates an output record initiates a write operation
that will transfer a record from the computer's internal
memory out onto the file, thus incrementing file-position
by one.

If the (compiler-dependent) file characteristics permit, 24
an output or shut-output statement may involve a file
activated by an open-input statement.

14. P r o g r a m s

A JOVIAL program is a list of declarations and statements
enclosed in the S T A R T and T E R M brackets. If a state-
meat name is not provided after the TERM, the first
statenmnt in the program's execution sequence is the first
s tatement listed that is not part of a procedure declaration.
And if this first-listed statement is named, its name can
also be considered as the name of the program. The $
separator indicates the typographic end of the program.
p r o g r a m : : = S T A R T o (nul l I d e c l a r a t i o n - l i s t) o

(nul l [nalncof.program o .) o s t a t e m e n t - l i s t o T E R M o
(nul l l nameof.fl t~t~m~nt-to-b~ ted) o $

R E F E R E N C E S

1. P r e l i m i n a r y r e p o r t - - i n t e r n a t i o n a l a l g e b r a i c l a n g u a g e . Comm.
ACM 1, 12 (1958).

2. ENGLUND AND CLARK. T h e Cl ip t r a n s l a t o r . Comm. ACM ~4
(Jan . 1961).

3. R e v i s e d r e p o r t on A L G O L 60. Comm. ACM 5 (Jan . 1963).

24 S o m e files a r e r e a d - o n l y in t y p e .

V o l u m e 6 / N u m b e r 12 / D e c e m b e r , 1963 C o m m u n i c a t i o n s o f t h e A C M 7 3 5

INDEX OF SYMBOLS AND TERMS

The following is an index of the JovIxL symbols and metalinguistic terms appearing in the syntactic formulas of
this report. Section numbers in parentheses refer to sections that contain term-defining formulas; section numbers
not in parentheses refer to sections that contain symbol- or term-using formulas. (To distinguish between symbols
and terms, notice that "symbol" is a term, whereas "TERM" is a symbol.)

accumula to r (10.5) 10.5
ac tua l - input -parameter - l i s t (11) 5.3.1,

11, 11.2
ac tua l -ou tpu t -paramete r - l i s t (I1) 11,

11.2
ac tua l -parameter - l i s t (11.2) 11.2
A L L 3.1, 9.3
a l te rna t ive (10.6) 10.6
al ternat ive- l is t (10.8) 10.6
a l t e rna t ive -s ta tement (1(}.6) 6.4
A N D 3.1, 5.3.4
Arithmetic 3.1, 5.1
a r i thmet ic -opera tor (3.1) 3.1, 5.3.2
A R R A Y 3.1, 6.3
a r ray-dec la ra t ion (6.3) 6, 10.1
A S S I G N 10.5
ass ignment - s t a tement (6.6, 9.4) 6.4
ass ign-s ta tement (10.5) 10.5

B E G I N 3.1, 6.4, 7.1, 8.1, 8.3, 10.1
Binary 3.1, 13.1
B I T 3.1, 9.5
b l ank 3, 5
block-l ist (10.2) 10.2
Boolean 3.1, 5.1
Boolean-cons tant (3.3) 3.3, 5.3.4
Boolean-formula (5.3.4, 9.4) 5.3, 5.3.4,

6.8, 10.6
Boolean- i tem-descr ipt ion (5.1) 5.1
Boolean-var iable (5.2, 9.7) 5.2, 5.3.4
bracke t (3.1) 3.1
B Y T E 3.1, 9.5

CHARacte r i s t i c 3.1, 9.6
C L O S E 3.1. 10.7
c losed-s ta tement (10.7) 6.4
commen t (4) 5
complex-s ta tement (6.4, 6.5) 0.4, 6.5
c o m p o u n d - s t a t e m e n t (0.4, 6.5) 6.4, 6.5,

6.8, 7.1, 10.6, 10.7, 11.1
condi t iona l - s ta tement (6.8) 6.4
cons tan t (3.3) 3, 10.1, 12

declarat ion (6) 6.4, 11.1
declarat ion-l ist (11.1) 11.1, 14
declarator (3.1) 3.1
D E F I N E 3.1, 10.3
define-declaration (10.3) 6
del imiter (3.1) 3
Dense 3.1, 8.1
descript ion (5.1) 6.1, 6.2, 6.3, 8.3, 10.1
descriptor (3.1) 3.1
dimension-l is t (6.3) 6.3
D I R E C T 3.1, 10.5
direct-code (10.5) 10.5
d i rec t -code-s ta tement (10.5) 6.4
Dual 3.1, 5.1
dua l -cons tan t (3.3) 3.3, 5.1
dual - i tem-descr ip t ion (5.1) 5.1

E N D 3.1, 6.4, 7.1, 8.1, 8.3, 10.1, 10.6
E N T R Y 3.1, 9.4
en t ry - fo rmula (9.4) 9.4
ent ry- l i s t (8.1) 6.1
en t ry - t ype (8.1) 8.1, 8.2, 8.3
en t ry-var iab le (9.4) 9.4
E Q 3.1, 9.4
exchange-s ta tement (6.7, 9.4) 6.4

F I L E 3.1, 13.1
file-declaration (13.1) 6
file-operator (3.1) 3.1
f ixed-constant (3.3) 3.3, 5.1
f ixed-point- i tem-descr ipt ion (5.1) 5.1
Floating 3.1, 5.1
f loat ing-constant (3.3) 3.3, 6.1
f loat ing-point- i tem-descr ipt ion (5.1)

5.1
F O R 3.1, 7.1, 9.3
fo rmal - inpu t -pa ramete r - l i s t (11) 11,

11.1
fo rmal -ou tpu t -paramete r - l i s t (11) 11,

11.1
formal-parameter- l i s t (11.1) 11.1
formula (5.3) 6.6, 11
for-clause (7.1, 9.3) 7.1
func t ion (5.3.1) 5.3.2, 5.3.3, 5.3.4
funct ional-modif ier (3.1) 3.1

G O T O 3.1, 6.9
go- to-s ta tement (6.9) 6.4
GO 3.1
G R 3.1

H o l h r i t h 3.1, 5.1, 13.1

identifier (3.2)
I F 3.1, 6.8
I F E I T H e r 3.1, 10.6
if-clause (6.8) 6.8, 7.1
index (5.2) 5.2, 7.1, 9.4, 9.5, 12, 13.3
index-list (5.2) 5.2
index-switch-l ist (12) 12
ini t ia l -value-declarat ion (10.1) 6
I N P U T 3.1, 13.3
input - record (13.3) 13.3, 13.4
i npu t - s t a t emen t (13.3) 6.4
in teger-constant (3.3) 3.3, 5.1
ITEM 3.1, 6.1, 8.3, 10.1
i tem-declara t ion (6.1) 6, 8.1
i tem-switch-l is t (12) 12

J O V I A L 3.1, 10.5

let ter (3) 3, 3.2, 3.3, 5, 7, 8.2
Like 3.1, 8.2
l ike4able-dec lara t ion (8.2) 8
l i tera l -constant (3.3) 3.3, 5.3.3, 10.1
l i teral-formula (5.3.3) 5.3, 5.3.4
l i teral - i tem-descr ipt ion (5.1) 5.1
l i teral-relat ion-list (5.3.4) 5.3.4
l i teral-variable (5.2, 9.5) 5.2, 5.3.3
logical-operator (3.1) 3.1
loop-counter (3.2) 7, 7.1, 7.2, 9.3, 9.7
loop-indices (7.1) 7.1
loop-s ta tement (7.1) 6.4
L Q 3.1
L S 3.1

MANTissa 3.1, 9.6
m a r k (3) 3, 5
Medium 3.1, 8.1
M O D E 3.1, 6.2, 10.1
mode-declara t ion (6.2) 6

name (3.2) 3, 3.2, 3.3, 5.2, 5.3.1, 5.3.4,
6.1, 6.3, 6.5, 6.9, 7.1, 8.1, 8.2, 8.3, 9.1,
9.2, 9.3, 9.4, 9.5, 9.6, 9X, 10.1, 10.2,

10.3, 10.4, 10.6, 10.7, 11, 11.1, 11.2, 12,
13.1, 13.2, 13.3, 13.4, 14

N E N T 3.1, 9.1
No 3.1, 8.1
N O T 3.1, 5.3.4
NQ 3.1, 9.4
null (2) 3.2, 3.3, 5, 5.1, 5.2, 5.3.1, 5.3.4,

6.3, 6.4, 8.1, 8.2, 8.3, 9.5, 9.6, 9.7, 10.1,
10.2, 10.5, 10.6, II , 11.1, 11.2, 12, 13.3,
13.4, 14

n u m b e r (3.3) 3.3, 5.1, 6.3, 8.1, 8.2, 8.3,
10.5, 13.1

numera l (3) 3, 3.2, 3.3, 5, 8.2
numer ic -eens tan t (3.3) 3.3, 5.3.2, 10.1,

13.4
numer ic - fo rmula (5.3.2, 9.1, 9.2) 5.2,

5.3, 5.3.2, 5.3.4
numer ic- i tem-descr ip t ion (5.1) 5.1
numeric-re la t ion- l is t (5.3.4) 5.3.4
numer ic -var iab le (5.2, 7, 9.1, 9.9, 13.2)

5.2, 5.3.2
N W D S E N 3.1, 9.2
n-dimensional -constant - l i s t (10.1) 10.1
n - - l -d imens iona l -cons tan t - l i s t (see 10.1)

10.1

v (5) 5, 5.1, 5.2, 5.3.1, 5.3.2, 5.3.4, 6.1, 6.2,
6.3, 6.4, 6,5, 6.6, 6.7, 6.8, 6.9, 7.1, 7.2,
8.1, 8.2, 8.3, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6,
9.7, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6,
10.7, 10.8, 11, 11.1, 11.2, 12, 13.1, 13.2,
13.3, 13.4, 14

oc ta l -cons tant (3.3) 3.3
oc ta l -number (3.3) 3.3
O D D 3.1, 9.7
O P E N 3.1, 13.3, 13.4
O R 3.1, 5.3.4
ord inary- tab le -dec la ra t ion (8.1) 8
O R I F 3.1, 10.6
O U T P U T 3.1, 13.4
ou tpu t - record (13.4) 13.4
o u t p u t - s t a t e m e n t (13.4) 6.4
O V E R L A Y 3.1, 10.2
over lay-declara t ion (10.2) 6, 8.1
overlay-l is t (10.2) 10.2

pack ing-mode (8.1) 8.1, 8.2, 8.3
Paral le l 3.1, 8.1
POSi t ion 3.1, 13.2
Preset 3.1, 1O.1
PROCedure 3.1, 11.1
procedure-declara t ion (11.1) 6
p rocedure - s t a t emen t (11.2) 6.4
p rog ram (14)

re la t ional - formula (5.3.4) 5.3.4
re la t ional-operator (3.1) 3.1, 5.3.4
R E T U R N 3.1, 10.8
r e t u r n - s t a t e m e n t (10.8) 6.4
Rigid 3.1, 8.1, 13.1
Rounded 3.1, 5.1

separat ion (5) 5
separa tor (3.1) 3.1
sequent ia l -operator (3.1) 3.1
Serial 3.1, 8.1
S H U T 3.1, 13.3, 13.4
s ign (3) 3.3, 5

s igned (3.3) 3.3, 5.1, 10.5
Signed 3.1, 5.1
s ign-s t r ing (3.3) 3.3, 4, 10.3, 10.5
s imple -s ta tement (6.4, 6.5) 6.4, 6.5,

6.8, 7.1, 10.6, 10.7
speci f ied-entry-s t ructure- table-declara-

t ion (8.3) 8
S T A R T 3.1, 14
s t a t emen t (6.4) 6.4
s ta tement - l i s t (6.4) 6.4, 7.1, 14
Status 3.1, 5.1
s t a tu s -cons t an t (3.3) 3.3, 5.1, 5.3.3
s t a tns - fo rmula (5.3.3) 5.3, 5.3.4
s ta tns- i tem-deser ip t ion (5.1) 5.1
s ta tus- l is t (5.1) 5.1, 13.1
s ta tus -var iab le (5.2) 5.2, 5.3.3, 5.3.4
S T O P 3.1, 10.4
s t ep - s t a t emen t (10.4) 6.4
S T R I N G 3.1, 8.3
s t r ing- i tem-declara t ion (8.3) 8.3
s t ruc tu red-en t ry - l i s t (8.3) 8.3
s t ruc tu red- i t em-dec la ra t ion (8.3) 8.3
subscr ip t (5.2) 5.2, 9.5, 9.6, 9.7, 10.6, 12
S W I T C H 3.1, 12
switch-call (13) 6.9, 12
swi tch-declara t ion (12) 6
s y m b o l (3)

T A B L E 3.1, 8.1, 8.2, 8.3
tab]e-deelarat ion (8) 6, 10.1
t ab]e - type (8.1) 8.1, 8.2, 8.3
T E R M 3.1, 14
T E S T 3.1, 7.2
tes t - s ta tement (7.2) 6.4
Transmission-code 3.1, 5.1

Unsigned 3.1, 5.1

Variable 3.1, 8.1, 13.1
var iable (5.2) 6.6, 6.7, 11, 13.3

1-dimensional-constant- l is t (10.1) 8.1,
8.3, 1O.1

2-dimensional-coustant- l i s t (see 10.1)
8.3

) 3.1, 3.3, 5.3.1, 5.3.2, 5.3.4, 9.1, 9.2,
9.3, 9.4, 9.5, 9.6, 9.7, 11.1, 11.2, 12, 13.2

- - 3.1, 3.3, 5.3.2
-I- 3.1, 3.3, 5.3.2

3.1, 6.6, 7.1, 9.4, 10.2, 10.5, 11.1,
11.2, 12

~ 3.1, 6.7, 9.4
$ 3.1, 4, 6.1, 6.2, 6.3, 6.6, 6.7, 6.8, 6.9,

7.1, 7.2, 8.1, 8.2, 8.3, 9.3, 9.4, 10.1,
10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8,
11.1, 11.2, 12, 13.1, 13.4, 14

$) 3.1, 5.2, 9.4, 9.5, 12, 13.3
* 3.1
** 3.1
(3.1, 3.3, 5.3.1, 5.3.2, 5.3.4, 9.1, 9.2,

9.3, 9.4, 9.5, 9.6, 9.7, 11.1, 11.2, 12, 13.2
($ 3.1, 5.2, 9.4, 9.5, 12, 13.3
([3.1, 5.3.2
• 3.1, 3.3, 5.2, 7.1, 9.5, 10.2, 11, 12
' t 3.1, 4, 10.3
] 3.1
/) 3.1, 5.3.2
• 3.1, 6.5, 3.3, 7.1, 10.6, 11, 14
... 3.1, 5.1, 13.3

736 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 6 / N u m b e r 12 / D e c e m b e r , 1 9 6 3

